Skip to main content

Advertisement

Log in

In-Vivo Tape Stripping Study with Caffeine for Comparisons on Body Sites, Age and Washing

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Assessing the percutaneous absorption of cosmetic ingredients using in-vitro human skin reveals certain limitations, such as restricted anatomical sites and repeated exposure, and to overcome these issues, in-vivo studies are required. The aim of the study is to develop a robust non-invasive in-vivo protocol that should be applicable to a wide range of application.

Methods

A robust tape stripping protocol was therefore designed according to recent recommendations, and the impact of two different washing procedures on caffeine distribution in tape strips was investigated to optimise the protocol. The optimised protocol was then used to study the effect of age and anatomical area on the percutaneous absorption of caffeine, including facial areas which are not readily available for in-vitro studies.

Results

With tape stripping, a difference between the percutaneous absorption on the face (forehead, cheek) and the volar forearm was observed. No obvious difference was observed between percutaneous absorption in young and post-menopausal women, but this could be due to the limited number of subjects.

Conclusion

This tape stripping protocol is now to be deployed to address many other factors, such as percutaneous absorption in other anatomical areas (e.g. abdomen, axilla, etc.), impact of repeated applications and effect of formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. OECD. OECD Guideline for the testing of chemicals, N° 428. Skin Absorption: In vitro Method. In. Paris, France; 2004. p. 8.

  2. Law RM, Ngo MA, Maibach HI. Twenty Clinically Pertinent Factors/Observations for Percutaneous Absorption in Humans. Am J Clin Dermatol. 2020;21(1):85–95.

    Article  Google Scholar 

  3. Bormann JL, Maibach HI. Effects of anatomical location on in vivo percutaneous penetration in man. Cutan Ocul Toxicol. 2020;39(3):213–22.

    Article  CAS  Google Scholar 

  4. Roskos KV, Maibach HI, Guy RH. The effect of aging on percutaneous absorption in man. J Pharmacokinet Biopharm. 1989;17(6):617–30.

    Article  CAS  Google Scholar 

  5. Rougier A, Lotte C, Corcuff P, Maibach HI. Relationship between skin permeability and corneocyte size according to anatomic site, age and sex in man. J Soc Cosmet Chem. 1988;39:15–26.

    Google Scholar 

  6. Hayashi T, Kawaguchi H, Eifuku T, Matsuoka H, Kawabata A, Nagai N. Changes in percutaneous absorption of fentanyl patches in rats treated with a sebum-like secretion. Chem Pharm Bull. 2020;68(9):879–84.

    Article  CAS  Google Scholar 

  7. Toll R, Jacobi U, Richter H, Lademann J, Schaefer H, Blume-Peytavi U. Penetration Profile of Microspheres in Follicular Targeting of Terminal Hair Follicles. J Investig Dermatol. 2003;123(1):168–76.

    Article  Google Scholar 

  8. Swales JG, Hamm G, Clench MR, Goodwin RJA. Mass spectrometry imaging and its application in pharmaceutical research and development: A concise review. Int J Mass Spectrom. 2019;437:99–112.

    Article  CAS  Google Scholar 

  9. Erdo F, Hashimoto N, Karvaly G, Nakamichi N, Kato Y. Critical evaluation and methodological positioning of the transdermal microdialysis technique. A review Journal of Controlled Release. 2016;233:147–61.

    Article  CAS  Google Scholar 

  10. Benfeldt E, Hansen SH, Volund A, Menne T, Shah VP. Bioequivalence of Topical Formulations in Humans: Evaluation by Dermal Microdialysis Sampling and the Dermatopharmacokinetic Method. J Invest Dermatol. 2006;127(1):170–8.

    Article  Google Scholar 

  11. Pena A-M, Chen X, Pence IJ, Bornschlögl T, Jeong S, Grégoire S, Luengo GS, Hallegot P, Obeidy P, Feizpour A, Chan KF, Evans CL. Imaging and quantifying drug delivery in skin – Part 2: Fluorescence andvibrational spectroscopic imaging methods. Adv Drug Deliv Rev. 2020;153:147–68.

    Article  CAS  Google Scholar 

  12. Sarri B, Chen X, Canonge R, Grégoire S, Formanek F, Galey JB, Potter A, Bornschlögl T, Rigneault H. In vivo quantitative molecular absorption of glycerol in human skin using coherent anti-Stokes Raman scattering (CARS) and two-photon auto-fluorescence. J Control Release. 2019;308:190–6.

    Article  CAS  Google Scholar 

  13. Shah VP, Flynn G, Yacobi A, Maibach HI, Bon C, Fleischer NM, Franz TJ, Kaplan SA, Kawamoto J, Lesko LJ, Marty JP, Pershing LK, Schaefer H, Sequeira JA, Shrivastava SP, Wilkin J, Williams RL. Bioequivalence of Topical Dermatological Dosage Forms-Methods of Evaluation of Bioequivalence. Pharm Res. 1998;15(2):167–71.

    Article  CAS  Google Scholar 

  14. Wiedersberg S, Leopold CS, Guy RH. Bioavailability and bioequivalence of topical glucocorticoids. Eur J Pharm Biopharm. 2008;68(3):453–66.

    Article  CAS  Google Scholar 

  15. N’Dri-stempfer B, Navidi WC, Guy RH, Bunge AL. Improved Bioequivalence Assessment of Topical Dermatological Drug Products Using Dermatopharmacokinetics. Pharm Res. 2009;26(2):316–28.

    Article  CAS  Google Scholar 

  16. Lademann J, Jacobi U, Surber C, Weigmann HJ, Fluhr JW. The tape stripping procedure – evaluation of some critical parameters. Eur J Pharm Biopharm. 2009;72(2):317–23.

    Article  CAS  Google Scholar 

  17. Lademann J, Meinke MC, Schanzer S, Richter H, Darvin ME, Haag SF, Fluhr JW, Weigmann H-J, Sterry W, Patzelt A. In vivo methods for the analysis of the penetration of topically applied substances in and through the skin barrier. Int J Cosmet Sci. 2012;34(6):551–9.

    Article  CAS  Google Scholar 

  18. Reddy MB, Stinchcomb AL, Guy RH, Bunge AL. Determining Dermal Absorption Parameters in Vivo From Tape Strip Data. Pharm Res. 2002;19(3):292–8.

    Article  CAS  Google Scholar 

  19. Chirikhina E, Chirikhin A, Xiao P, Dewsbury-Ennis S, Bianconi F. In vivo assessment of water content, trans-epidermialwater loss and thickness in human facial skin. Applied Sciences (Switzerland). 2020;10(17):6139.

    Article  CAS  Google Scholar 

  20. Rothe H, Obringer C, Manwaring J, Avci C, Wargniez W, Eilstein J, Hewitt N, Cubberley R, Duplan H, Lange D, Jacques-Jamin C, Klaric M, Schepky A, Gregoire S, Gregoire S. Comparison of protocols measuring diffusion and partition coefficients in the stratum corneum. J Appl Toxicol. 2017;37(7):808–16.

    Article  Google Scholar 

  21. Leal LB, Cordery SF, gado-Charro MBa, Bunge AL, Guy RH. Bioequivalence Methodologies for Topical Drug Products: In Vitro and Ex Vivo Studies with a Corticosteroid and an Anti-Fungal Drug. Pharmaceutical Research. 2017:1–8.

  22. Schäfer-Korting M, Mahmoud A, Lombardi Borgia S, Brüggener B, Kleuser B, Schreiber S, Mehnert W. Reconstructed Epidermis and Full-Thickness Skin for Absorption Testing: Influence of the Vehicles used on Steroid Permeation. ATLA. 2008;36(4):441–52.

    PubMed  Google Scholar 

  23. Pershing LK, Bakhtian S, Poncelet CE, Corlett JL, Shah VP. Comparison of skin stripping, in vitro release, and skin blanching response methods to measure dose response and similarity of triamcinolone acetonide cream strengths from two manufactured sources. J Pharm Sci. 2002;91(5):1312–23.

    Article  CAS  Google Scholar 

  24. Kalia YN, Pirot F, Guy RH. Homogeneous transport in a heterogeneous membrane: water diffusion across human stratum corneum in vivo. Biophys J. 1996;71(5):2692–700.

    Article  CAS  Google Scholar 

  25. Russell LM, Wiedersberg S, Delgado-Charro BM. The determination of stratum corneum thickness An alternative approach. Eur J Pharm Biopharm. 2008;69(3):861–70.

    Article  CAS  Google Scholar 

  26. Herkenne C, Naik A, Kalia YN, Hadgraft J, Guy RH. Effect of propylene glycol on ibuprofen absorption into human skin in vivo. J Pharm Sci. 2008;97(1):185–97.

    Article  CAS  Google Scholar 

  27. Egawa M, Hirao T, Takahashi M. In vivo estimation of stratum corneum thickness from water concentration profiles obtained with raman spectroscopy. Acta Dermato-Venereologica. 2007;87(1):4-

  28. Shah VP. Progress in methodologies for evaluating bioequivalence of topical formulations. Am J Clin Dermatol. 2001;2(5):275–80.

    Article  CAS  Google Scholar 

  29. Wargniez W, Jungman E, Wilkinson S, Seyler N, Gr+®goire S. Inter-laboratory skin distribution study of 4-n-butyl resorcinol: The importance of liquid chromatography/mass spectrometry (HPLCGÇôMS/MS) bioanalytical validation. Journal of Chromatography B. 2017;1060(Supplement C):416–423.

  30. Wiedersberg S, Naik A, Leopold CS, Guy RH. Pharmacodynamics and dermatopharmacokinetics of betamethasone 17-valerate: assessment of topical bioavailability. Br J Dermatol. 2009;160(3):676–86.

    Article  CAS  Google Scholar 

  31. Zhang Y, Kung C-P, Iliopoulos F, Sil BC, Hadgraft J, Lane ME. Dermal Delivery of Niacinamide—In Vivo Studies. Pharmaceutics. 2021;13(5):726.

    Article  CAS  Google Scholar 

  32. Wester RC, Maibach HI. Regional variation in percutaneous absorption: Principles and application to human risk assessment. In: Bronaugh RL, Maibach HI, editors. Percutaneous Absorption: Drugs-Cosmetics-Mechanisms-Methodology. 4th ed. New York: Marcel Dekker, Inc.; 2005. p. 85–93.

    Chapter  Google Scholar 

  33. Hoppel M, Tabosa MAM, Bunge AL, Delgado-Charro MB, Guy RH. Assessment of Drug Delivery Kinetics to Epidermal Targets In Vivo. AAPS J. 2021;23(3):49.

    Article  CAS  Google Scholar 

  34. Cua AB, Wilhelm KP, Maibach HI. Skin Surface Lipid and Skin Friction: Relation to Age, Sex and Anatomical Region. Skin Pharmacology and Physiology. 1995;8(5):246–51.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank the Centre de Recherche Biologique, Hopital Saint-Louis, Paris for conducting study A, and Intertek Etudes Cliniques for conducting studies B and C. We also wish to thank Acolad and Conor McMahon for language revisions. The authors are full-time employees of L'Oréal.

Author information

Authors and Affiliations

Authors

Contributions

WW: Investigation, writing original draft; SC: Investigation clinical studies B and C, writing original draft; NB: Conceptualisation, investigation clinical study A, writing and review; OD: Formal analysis, writing and review; SN: Conceptualisation, writing and review; SG: Conceptualisation, writing original draft and editing.

Corresponding author

Correspondence to William Wargniez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wargniez, W., Connétable, S., Bourokba, N. et al. In-Vivo Tape Stripping Study with Caffeine for Comparisons on Body Sites, Age and Washing. Pharm Res 39, 1935–1944 (2022). https://doi.org/10.1007/s11095-022-03311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03311-0

KEY WORDS

Navigation