Skip to main content

Advertisement

Log in

Nanotechnology for Enhanced Cytoplasmic and Organelle Delivery of Bioactive Molecules to Immune Cells

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Immune cells stand as a critical component of the immune system to maintain the internal environment homeostasis. The dysfunction of immune cells can result in various life-threatening diseases, including refractory infection, diabetes, cardiovascular disease, and cancer. Therefore, strategies to standardize or even enhance the function of immune cells are critical. Recently, nanotechnology has been highly researched and extensively applied for enhancing the cytoplasmic delivery of bioactive molecules to immune cells, providing efficient approaches to correct in vivo and in vitro dysfunction of immune cells. This review focuses on the technologies and challenges involved in improving endo-lysosomal escape, cytoplasmic release and organelle targeted delivery of different bioactive molecules in immune cells. Furthermore, it will elaborate on the broader vision of applying nanotechnology for treating immune cell-related diseases and constructing immune therapies and cytopharmaceuticals as potential treatments for diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71.

    Article  CAS  PubMed  Google Scholar 

  2. Buckley CD, Chernajovsky L, Chernajovsky Y, Modis LK, O’Neill LA, Brown D, Connor R, Coutts D, Waterman EA, Tak pp. Immune-mediated inflammation across disease boundaries: breaking down research silos. Nat Immunol. 2021;22(11):1344–8.

    Article  CAS  PubMed  Google Scholar 

  3. Murphy AJ, Febbraio MA. Immune-based therapies in cardiovascular and metabolic diseases: past, present and future. Nat Rev Immunol. 2021;21(10):669–79.

    Article  CAS  PubMed  Google Scholar 

  4. Mosanya CH, Isaacs JD. Tolerising cellular therapies: what is their promise for autoimmune disease? Ann Rheum Dis. 2019;78(3):297–310.

    Article  CAS  PubMed  Google Scholar 

  5. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA. Cancer immunology Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanmamed MF, Chen L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell. 2018;175(2):313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun. 2019;10(1):5408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021;5(9):951–67.

    Article  PubMed  Google Scholar 

  10. Gong N, Sheppard NC, Billingsley MM, June CH, Mitchell MJ. Nanomaterials for T-cell cancer immunotherapy. Nat Nanotechnol. 2021;16(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  11. Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68–96.

    Article  CAS  PubMed  Google Scholar 

  12. Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J Control Release. 2011;151(3):220–8.

    Article  CAS  PubMed  Google Scholar 

  13. Parodi A, Corbo C, Cevenini A, Molinaro R, Palomba R, Pandolfi L, Agostini M, Salvatore F, Tasciotti E. Enabling cytoplasmic delivery and organelle targeting by surface modification of nanocarriers. Nanomedicine (Lond). 2015;10(12):1923–40.

    Article  CAS  Google Scholar 

  14. Ma D. Enhancing endosomal escape for nanoparticle mediated siRNA delivery. Nanoscale. 2014;6(12):6415–25.

    Article  CAS  PubMed  Google Scholar 

  15. Wilson JT, Keller S, Manganiello MJ, Cheng C, Lee CC, Opara C, Convertine A, Stayton PS. pH-Responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. ACS Nano. 2013;7(5):3912–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yuan H, Yang Y, Xue W, Liu Z. Fluorinated Redox-Responsive Poly(amidoamine) as a Vaccine Delivery System for Antitumor Immunotherapy. ACS Biomater Sci Eng. 2019;5(2):644–53.

    Article  CAS  PubMed  Google Scholar 

  17. Cao F, Yan M, Liu Y, Liu L, Ma G. Photothermally Controlled MHC Class I Restricted CD8(+) T-Cell Responses Elicited by Hyaluronic Acid Decorated Gold Nanoparticles as a Vaccine for Cancer Immunotherapy. Adv Healthc Mater. 2018;7(10): e1701439.

    Article  PubMed  CAS  Google Scholar 

  18. Parkin J, Cohen B. An overview of the immune system. Lancet. 2001;357(9270):1777–89.

    Article  CAS  PubMed  Google Scholar 

  19. Rajendran L, Knolker HJ, Simons K. Subcellular targeting strategies for drug design and delivery. Nat Rev Drug Discov. 2010;9(1):29–42.

    Article  CAS  PubMed  Google Scholar 

  20. Charpentier JC, King PD. Mechanisms and functions of endocytosis in T cells. Cell Commun Signal. 2021;19(1):92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev. 2018;118(16):7409–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145(3):182–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rennick JJ, Johnston APR, Parton RG. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat Nanotechnol. 2021;16(3):266–76.

    Article  CAS  PubMed  Google Scholar 

  24. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A. 2008;105(33):11613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17:593–623.

    Article  CAS  PubMed  Google Scholar 

  26. Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS, Ley K. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity. 2005;22(3):285–94.

    Article  CAS  PubMed  Google Scholar 

  27. Martinez-Martin N, Fernandez-Arenas E, Cemerski S, Delgado P, Turner M, Heuser J, Irvine DJ, Huang B, Bustelo XR, Shaw A, Alarcon B. T cell receptor internalization from the immunological synapse is mediated by TC21 and RhoG GTPase-dependent phagocytosis. Immunity. 2011;35(2):208–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kruth HS, Jones NL, Huang W, Zhao B, Ishii I, Chang J, Combs CA, Malide D, Zhang WY. Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J Biol Chem. 2005;280(3):2352–60.

    Article  CAS  PubMed  Google Scholar 

  29. Karmakar U, Chu JY, Sundaram K, Astier AL, Garside H, Hansen CG, Dransfield I, Vermeren S. Immune complex-induced apoptosis and concurrent immune complex clearance are anti-inflammatory neutrophil functions. Cell Death Dis. 2021;12(4):296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Charpentier JC, Chen D, Lapinski PE, Turner J, Grigorova I, Swanson JA, King PD. Macropinocytosis drives T cell growth by sustaining the activation of mTORC1. Nat Commun. 2020;11(1):180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garrett WS, Chen LM, Kroschewski R, Ebersold M, Turley S, Trombetta S, Galan JE, Mellman I. Developmental control of endocytosis in dendritic cells by Cdc42. Cell. 2000;102(3):325–34.

    Article  CAS  PubMed  Google Scholar 

  32. Lemire P, Houde M, Segura M. Encapsulated group B Streptococcus modulates dendritic cell functions via lipid rafts and clathrin-mediated endocytosis. Cell Microbiol. 2012;14(11):1707–19.

    Article  CAS  PubMed  Google Scholar 

  33. Lunov O, Zablotskii V, Syrovets T, Rocker C, Tron K, Nienhaus GU, Simmet T. Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages. Biomaterials. 2011;32(2):547–55.

    Article  CAS  PubMed  Google Scholar 

  34. Tan X, Luo M, Liu AP. Clathrin-mediated endocytosis regulates fMLP-mediated neutrophil polarization. Heliyon. 2018;4(9): e00819.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, Baker J, Jeffery LE, Kaur S, Briggs Z, Hou TZ, Futter CE, Anderson G, Walker LS, Sansom DM. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332(6029):600–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu XD, Zhuang Y, Ben JJ, Qian LL, Huang HP, Bai H, Sha JH, He ZG, Chen Q. Caveolae-dependent endocytosis is required for class A macrophage scavenger receptor-mediated apoptosis in macrophages. J Biol Chem. 2011;286(10):8231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taylor A, Halene S. The regulatory role of serum response factor pathway in neutrophil inflammatory response. Curr Opin Hematol. 2015;22(1):67–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Compeer EB, Kraus F, Ecker M, Redpath G, Amiezer M, Rother N, Nicovich PR, Kapoor-Kaushik N, Deng Q, Samson GPB, Yang Z, Lou J, Carnell M, Vartoukian H, Gaus K, Rossy J. A mobile endocytic network connects clathrin-independent receptor endocytosis to recycling and promotes T cell activation. Nat Commun. 2018;9(1):1597.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Quatrini L, Molfetta R, Zitti B, Peruzzi G, Fionda C, Capuano C, Galandrini R, Cippitelli M, Santoni A, Paolini R. Ubiquitin-dependent endocytosis of NKG2D-DAP10 receptor complexes activates signaling and functions in human NK cells. Sci Signal. 2015;8(400):ra108.

    Article  PubMed  CAS  Google Scholar 

  40. Alvarez-Dominguez C, Calderon-Gonzalez R, Teran-Navarro H, Salcines-Cuevas D, Garcia-Castano A, Freire J, Gomez-Roman J, Rivera F. Dendritic cell therapy in melanoma. Ann Transl Med. 2017;5(19):386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hashemi V, Farhadi S, Ghasemi Chaleshtari M, Seashore-Ludlow B, Masjedi A, Hojjat-Farsangi M, Namdar A, Ajjoolabady A, Mohammadi H, Ghalamfarsa G, Jadidi-Niaragh F. Nanomedicine for improvement of dendritic cell-based cancer immunotherapy. Int Immunopharmacol. 2020;83: 106446.

    Article  CAS  PubMed  Google Scholar 

  42. Thomann-Harwood LJ, Kaeuper P, Rossi N, Milona P, Herrmann B, McCullough KC. Nanogel vaccines targeting dendritic cells: contributions of the surface decoration and vaccine cargo on cell targeting and activation. J Control Release. 2013;166(2):95–105.

    Article  CAS  PubMed  Google Scholar 

  43. Amigorena S, Savina A. Intracellular mechanisms of antigen cross presentation in dendritic cells. Curr Opin Immunol. 2010;22(1):109–17.

    Article  CAS  PubMed  Google Scholar 

  44. Liu Q, Chen X, Jia J, Zhang W, Yang T, Wang L, Ma G. pH-Responsive Poly(d, l-lactic-co-glycolic acid) Nanoparticles with Rapid Antigen Release Behavior Promote Immune Response. ACS Nano. 2015;9(5):4925–38.

    Article  CAS  PubMed  Google Scholar 

  45. Gong N, Zhang Y, Teng X, Wang Y, Huo S, Qing G, Ni Q, Li X, Wang J, Ye X, Zhang T, Chen S, Wang Y, Yu J, Wang PC, Gan Y, Zhang J, Mitchell MJ, Li J, Liang XJ. Proton-driven transformable nanovaccine for cancer immunotherapy. Nat Nanotechnol. 2020;15(12):1053–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang C, Li P, Liu L, Pan H, Li H, Cai L, Ma Y. Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class I antigen presentation. Biomaterials. 2016;79:88–100.

    Article  CAS  PubMed  Google Scholar 

  47. Akita H, Kogure K, Moriguchi R, Nakamura Y, Higashi T, Nakamura T, Serada S, Fujimoto M, Naka T, Futaki S, Harashima H. Reprint of: Nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: Programmed endosomal escape and dissociation. J Control Release. 2011;149(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  48. Keller S, Wilson JT, Patilea GI, Kern HB, Convertine AJ, Stayton PS. Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses. J Control Release. 2014;191:24–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim Y, Kang S, Shin H, Kim T, Yu B, Kim J, Yoo D, Jon S. Sequential and Timely Combination of a Cancer Nanovaccine with Immune Checkpoint Blockade Effectively Inhibits Tumor Growth and Relapse. Angew Chem Int Ed Engl. 2020;59(34):14628–38.

    Article  CAS  PubMed  Google Scholar 

  50. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pei Y, Yeo Y. Drug delivery to macrophages: Challenges and opportunities. J Control Release. 2016;240:202–11.

    Article  CAS  PubMed  Google Scholar 

  52. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64.

    Article  CAS  PubMed  Google Scholar 

  53. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–96.

    Article  CAS  PubMed  Google Scholar 

  54. Claus V, Jahraus A, Tjelle T, Berg T, Kirschke H, Faulstich H, Griffiths G. Lysosomal enzyme trafficking between phagosomes, endosomes, and lysosomes in J774 macrophages. Enrichment of cathepsin H in early endosomes. J Biol Chem. 1998;273(16):9842–51.

    Article  CAS  PubMed  Google Scholar 

  55. Evans CJ, Aguilera RJ. DNase II: genes, enzymes and function. Gene. 2003;322:1–15.

    Article  CAS  PubMed  Google Scholar 

  56. Ortega RA, Barham WJ, Kumar B, Tikhomirov O, McFadden ID, Yull FE, Giorgio TD. Biocompatible mannosylated endosomal-escape nanoparticles enhance selective delivery of short nucleotide sequences to tumor associated macrophages. Nanoscale. 2015;7(2):500–10.

    Article  CAS  PubMed  Google Scholar 

  57. Pi J, Shen L, Shen H, Yang E, Wang W, Wang R, Huang D, Lee BS, Hu C, Chen C, Jin H, Cai J, Zeng G, Chen ZW. Mannosylated graphene oxide as macrophage-targeted delivery system for enhanced intracellular M.tuberculosis killing efficiency. Mater Sci Eng C Mater Biol Appl. 2019;103:109777.

    Article  CAS  PubMed  Google Scholar 

  58. Semiramoth N, Di Meo C, Zouhiri F, Said-Hassane F, Valetti S, Gorges R, Nicolas V, Poupaert JH, Chollet-Martin S, Desmaele D, Gref R, Couvreur P. Self-assembled squalenoylated penicillin bioconjugates: an original approach for the treatment of intracellular infections. ACS Nano. 2012;6(5):3820–31.

    Article  CAS  PubMed  Google Scholar 

  59. Henry R, Shaughnessy L, Loessner MJ, Alberti-Segui C, Higgins DE, Swanson JA. Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes. Cell Microbiol. 2006;8(1):107–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shaughnessy LM, Hoppe AD, Christensen KA, Swanson JA. Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell Microbiol. 2006;8(5):781–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mitchell G, Ge L, Huang Q, Chen C, Kianian S, Roberts MF, Schekman R, Portnoy DA. Avoidance of autophagy mediated by PlcA or ActA is required for Listeria monocytogenes growth in macrophages. Infect Immun. 2015;83(5):2175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Smith GA, Marquis H, Jones S, Johnston NC, Portnoy DA, Goldfine H. The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun. 1995;63(11):4231–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stier EM, Mandal M, Lee KD. Differential cytosolic delivery and presentation of antigen by listeriolysin O-liposomes to macrophages and dendritic cells. Mol Pharm. 2005;2(1):74–82.

    Article  CAS  PubMed  Google Scholar 

  64. Xiong MH, Bao Y, Yang XZ, Wang YC, Sun B, Wang J. Lipase-sensitive polymeric triple-layered nanogel for “on-demand” drug delivery. J Am Chem Soc. 2012;134(9):4355–62.

    Article  CAS  PubMed  Google Scholar 

  65. Vasdekis AE, Scott EA, O’Neil CP, Psaltis D, Hubbell JA. Precision intracellular delivery based on optofluidic polymersome rupture. ACS Nano. 2012;6(9):7850–7.

    Article  CAS  PubMed  Google Scholar 

  66. Moroni F, Ammirati E, Norata GD, Magnoni M, Camici PG. The Role of Monocytes and Macrophages in Human Atherosclerosis, Plaque Neoangiogenesis, and Atherothrombosis. Mediators Inflamm. 2019;2019:7434376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol. 2010;10(1):36–46.

    Article  CAS  PubMed  Google Scholar 

  68. Ning Y, Bai Q, Lu H, Li X, Pandak WM, Zhao F, Chen S, Ren S, Yin L. Overexpression of mitochondrial cholesterol delivery protein, StAR, decreases intracellular lipids and inflammatory factors secretion in macrophages. Atherosclerosis. 2009;204(1):114–20.

    Article  CAS  PubMed  Google Scholar 

  69. Zakirov FH, Zhang D, Grechko AV, Wu WK, Poznyak AV, Orekhov AN. Lipid-based gene delivery to macrophage mitochondria for atherosclerosis therapy. Pharmacol Res Perspect. 2020;8(2): e00584.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pathak RK, Kolishetti N, Dhar S. Targeted nanoparticles in mitochondrial medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(3):315–29.

    Article  CAS  PubMed  Google Scholar 

  71. Marrache S, Dhar S. Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis. Proc Natl Acad Sci. 2013;110(23):9445–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–75.

    Article  CAS  PubMed  Google Scholar 

  73. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6(3):173–82.

    Article  CAS  PubMed  Google Scholar 

  74. Soehnlein O, Steffens S, Hidalgo A, Weber C. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol. 2017;17(4):248–61.

    Article  CAS  PubMed  Google Scholar 

  75. Dehghani T, Panitch A. Endothelial cells, neutrophils and platelets: getting to the bottom of an inflammatory triangle. Open Biol. 2020;10(10): 200161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rossi AG, Sawatzky DA, Walker A, Ward C, Sheldrake TA, Riley NA, Caldicott A, Martinez-Losa M, Walker TR, Duffin R, Gray M, Crescenzi E, Martin MC, Brady HJ, Savill JS, Dransfield I, Haslett C. Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nat Med. 2006;12(9):1056–64.

    Article  CAS  PubMed  Google Scholar 

  77. Wang F, Ullah A, Fan X, Xu Z, Zong R, Wang X, Chen G. Delivery of nanoparticle antigens to antigen-presenting cells: from extracellular specific targeting to intracellular responsive presentation. J Control Release. 2021;333:107–28.

    Article  CAS  PubMed  Google Scholar 

  78. Levine AP, Duchen MR, de Villiers S, Rich PR, Segal AW. Alkalinity of neutrophil phagocytic vacuoles is modulated by HVCN1 and has consequences for myeloperoxidase activity. PLoS ONE. 2015;10(4): e0125906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Segal AW, Geisow M, Garcia R, Harper A, Miller R. The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. Nature. 1981;290(5805):406–9.

    Article  CAS  PubMed  Google Scholar 

  80. Styrt B, Klempner MS. Internal pH of human neutrophil lysosomes. FEBS Lett. 1982;149(1):113–6.

    Article  CAS  PubMed  Google Scholar 

  81. Wang S, Lai X, Li C, Chen M, Hu M, Liu X, Song Y, Deng Y. Sialic acid-conjugate modified doxorubicin nanoplatform for treating neutrophil-related inflammation. J Control Release. 2021;337:612–27.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang CY, Dong X, Gao J, Lin W, Liu Z, Wang Z. Nanoparticle-induced neutrophil apoptosis increases survival in sepsis and alleviates neurological damage in stroke. Sci Adv. 2019;5(11):eaax7964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Smitha KT, Nisha N, Maya S, Biswas R, Jayakumar R. Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes. Int J Biol Macromol. 2015;74:36–43.

    Article  CAS  PubMed  Google Scholar 

  84. Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 1997;89(10):3503–21.

    Article  CAS  PubMed  Google Scholar 

  85. Reibetanz U, Schonberg M, Rathmann S, Strehlow V, Gose M, Lessig J. Inhibition of human neutrophil elastase by alpha1-antitrypsin functionalized colloidal microcarriers. ACS Nano. 2012;6(7):6325–36.

    Article  CAS  PubMed  Google Scholar 

  86. Cevaal PM, Ali A, Czuba-Wojnilowicz E, Symons J, Lewin SR, Cortez-Jugo C, Caruso F. In Vivo T Cell-Targeting Nanoparticle Drug Delivery Systems: Considerations for Rational Design. ACS Nano. 2021;15(3):3736–53.

    Article  CAS  PubMed  Google Scholar 

  87. Xiong R, Hua D, Van Hoeck J, Berdecka D, Leger L, De Munter S, Fraire JC, Raes L, Harizaj A, Sauvage F, Goetgeluk G, Pille M, Aalders J, Belza J, Van Acker T, Bolea-Fernandez E, Si T, Vanhaecke F, De Vos WH, Vandekerckhove B, van Hengel J, Raemdonck K, Huang C, De Smedt SC, Braeckmans K. Photothermal nanofibres enable safe engineering of therapeutic cells. Nat Nanotechnol. 2021;16: 1281–91.

  88. Mislick KA, Baldeschwieler JD. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci U S A. 1996;93(22):12349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8(3):183–92.

    Article  CAS  PubMed  Google Scholar 

  90. Huang HY, Lee CC, Chiang BL. Small interfering RNA against interleukin-5 decreases airway eosinophilia and hyper-responsiveness. Gene Ther. 2008;15(9):660–7.

    Article  CAS  PubMed  Google Scholar 

  91. Lee CC, Huang HY, Chiang BL. Lentiviral-mediated GATA-3 RNAi decreases allergic airway inflammation and hyperresponsiveness. Mol Ther. 2008;16(1):60–5.

    Article  CAS  PubMed  Google Scholar 

  92. Werth S, Urban-Klein B, Dai L, Hobel S, Grzelinski M, Bakowsky U, Czubayko F, Aigner A. A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. J Control Release. 2006;112(2):257–70.

    Article  CAS  PubMed  Google Scholar 

  93. Yang J, Chen H, Vlahov IR, Cheng JX, Low PS. Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging. Proc Natl Acad Sci U S A. 2006;103(37):13872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xie Y, Kim NH, Nadithe V, Schalk D, Thakur A, Kilic A, Lum LG, Bassett DJP, Merkel OM. Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma. J Control Release. 2016;229:120–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Olden BR, Cheng Y, Yu JL, Pun SH. Cationic polymers for non-viral gene delivery to human T cells. J Control Release. 2018;282:140–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. McKinlay CJ, Vargas JR, Blake TR, Hardy JW, Kanada M, Contag CH, Wender PA, Waymouth RM. Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc Natl Acad Sci U S A. 2017;114(4):E448–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Moffett HF, Coon ME, Radtke S, Stephan SB, McKnight L, Lambert A, Stoddard BL, Kiem HP, Stephan MT. Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers. Nat Commun. 2017;8(1):389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang YS, Moynihan KD, Bekdemir A, Dichwalkar TM, Noh MM, Watson N, Melo M, Ingram J, Suh H, Ploegh H, Stellacci FR, Irvine DJ. Targeting small molecule drugs to T cells with antibody-directed cell-penetrating gold nanoparticles. Biomater Sci. 2018;7(1):113–24.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kim J, Kang Y, Tzeng SY, Green JJ. Synthesis and application of poly(ethylene glycol)-co-poly(beta-amino ester) copolymers for small cell lung cancer gene therapy. Acta Biomater. 2016;41:293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li X, Tzeng SY, Liu X, Tammia M, Cheng YH, Rolfe A, Sun D, Zhang N, Green JJ, Wen X, Mao HQ. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain. Biomaterials. 2016;84:157–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Narayanan K, Yen SK, Dou Q, Padmanabhan P, Sudhaharan T, Ahmed S, Ying JY, Selvan ST. Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots. Sci Rep. 2013;3:2184.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W, Reiman D, Bonagofski E, Wohlfahrt ME, Pillai SPS, Stephan MT. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol. 2017;12(8):813–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhao Q, Gong Z, Li Z, Wang J, Zhang J, Zhao Z, Zhang P, Zheng S, Miron RJ, Yuan Q, Zhang Y. Target Reprogramming Lysosomes of CD8+ T Cells by a Mineralized Metal-Organic Framework for Cancer Immunotherapy. Adv Mater. 2021;33(17): e2100616.

    Article  PubMed  CAS  Google Scholar 

  104. Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 2021;18(2):85–100.

    Article  PubMed  Google Scholar 

  105. Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016;16(1):7–19.

    Article  CAS  PubMed  Google Scholar 

  106. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097–100.

    Article  CAS  PubMed  Google Scholar 

  107. Suck G, Odendahl M, Nowakowska P, Seidl C, Wels WS, Klingemann HG, Tonn T. NK-92: an “off-the-shelf therapeutic” for adoptive natural killer cell-based cancer immunotherapy. Cancer Immunol Immunother. 2016;65(4):485–92.

    Article  CAS  PubMed  Google Scholar 

  108. Tonn T, Schwabe D, Klingemann HG, Becker S, Esser R, Koehl U, Suttorp M, Seifried E, Ottmann OG, Bug G. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy. 2013;15(12):1563–70.

    Article  CAS  PubMed  Google Scholar 

  109. Nakamura T, Yamada K, Fujiwara Y, Sato Y, Harashima H. Reducing the Cytotoxicity of Lipid Nanoparticles Associated with a Fusogenic Cationic Lipid in a Natural Killer Cell Line by Introducing a Polycation-Based siRNA Core. Mol Pharm. 2018;15(6):2142–50.

    Article  CAS  PubMed  Google Scholar 

  110. Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, Sah DW, Stebbing D, Crosley EJ, Yaworski E, Hafez IM, Dorkin JR, Qin J, Lam K, Rajeev KG, Wong KF, Jeffs LB, Nechev L, Eisenhardt ML, Jayaraman M, Kazem M, Maier MA, Srinivasulu M, Weinstein MJ, Chen Q, Alvarez R, Barros SA, De S, Klimuk SK, Borland T, Kosovrasti V, Cantley WL, Tam YK, Manoharan M, Ciufolini MA, Tracy MA, de Fougerolles A, MacLachlan I, Cullis PR, Madden TD, Hope MJ. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28(2):172–6.

    Article  CAS  PubMed  Google Scholar 

  111. Heyes J, Palmer L, Bremner K, MacLachlan I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release. 2005;107(2):276–87.

    Article  CAS  PubMed  Google Scholar 

  112. Nakamura T, Nakade T, Yamada K, Sato Y, Harashima H. The hydrophobic tail of a pH-sensitive cationic lipid influences siRNA transfection activity and toxicity in human NK cell lines. Int J Pharm. 2021;609: 121140.

    Article  CAS  PubMed  Google Scholar 

  113. Ulasov AV, Khramtsov YV, Trusov GA, Rosenkranz AA, Sverdlov ED, Sobolev AS. Properties of PEI-based polyplex nanoparticles that correlate with their transfection efficacy. Mol Ther. 2011;19(1):103–12.

    Article  CAS  PubMed  Google Scholar 

  114. Sato Y, Hashiba K, Sasaki K, Maeki M, Tokeshi M, Harashima H. Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo. J Control Release. 2019;295:140–52.

    Article  CAS  PubMed  Google Scholar 

  115. Wu D, Wang S, Yu G, Chen X. Cell Death Mediated by the Pyroptosis Pathway with the Aid of Nanotechnology: Prospects for Cancer Therapy. Angew Chem Int Ed Engl. 2021;60(15):8018–34.

    Article  CAS  PubMed  Google Scholar 

  116. Mirshafiee V, Sun B, Chang CH, Liao YP, Jiang W, Jiang J, Liu X, Wang X, Xia T, Nel AE. Toxicological Profiling of Metal Oxide Nanoparticles in Liver Context Reveals Pyroptosis in Kupffer Cells and Macrophages versus Apoptosis in Hepatocytes. ACS Nano. 2018;12(4):3836–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Reisetter AC, Stebounova LV, Baltrusaitis J, Powers L, Gupta A, Grassian VH, Monick MM. Induction of inflammasome-dependent pyroptosis by carbon black nanoparticles. J Biol Chem. 2011;286(24):21844–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Su S, Kang PM. Systemic Review of Biodegradable Nanomaterials in Nanomedicine. Nanomaterials (Basel). 2020;10(4): 656.

  119. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55(3):329–47.

    Article  CAS  PubMed  Google Scholar 

  120. Singh B, Garg T, Goyal AK, Rath G. Recent advancements in the cardiovascular drug carriers. Artif Cells Nanomed Biotechnol. 2016;44(1):216–25.

    Article  CAS  PubMed  Google Scholar 

  121. Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Adv Drug Deliv Rev. 2016;107:367–92.

    Article  CAS  PubMed  Google Scholar 

  122. Park K, Skidmore S, Hadar J, Garner J, Park H, Otte A, Soh BK, Yoon G, Yu D, Yun Y, Lee BK, Jiang X, Wang Y. Injectable, long-acting PLGA formulations: Analyzing PLGA and understanding microparticle formation. J Control Release. 2019;304:125–34.

    Article  CAS  PubMed  Google Scholar 

  123. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  124. Pombo Garcia K, Zarschler K, Barbaro L, Barreto JA, O’Malley W, Spiccia L, Stephan H, Graham B. Zwitterionic-coated, “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small. 2014;10(13):2516–29.

    Article  PubMed  CAS  Google Scholar 

  125. Olden BR, Cheng E, Cheng Y, Pun SH. Identifying key barriers in cationic polymer gene delivery to human T cells. Biomater Sci. 2019;7(3):789–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–24.

    Article  CAS  PubMed  Google Scholar 

  127. Li W, Su Z, Hao M, Ju C, Zhang C. Cytopharmaceuticals: An emerging paradigm for drug delivery. J Control Release. 2020;328:313–24.

    Article  CAS  PubMed  Google Scholar 

  128. Xue J, Zhao Z, Zhang L, Xue L, Shen S, Wen Y, Wei Z, Wang L, Kong L, Sun H, Ping Q, Mo R, Zhang C. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat Nanotechnol. 2017;12(7):692–700.

    Article  CAS  PubMed  Google Scholar 

  129. Ju C, Wen Y, Zhang L, Wang Q, Xue L, Shen J, Zhang C. Neoadjuvant Chemotherapy Based on Abraxane/Human Neutrophils Cytopharmaceuticals with Radiotherapy for Gastric Cancer. Small. 2019;15(5): e1804191.

    Article  PubMed  CAS  Google Scholar 

  130. Zhang L, Zhang Y, Xue Y, Wu Y, Wang Q, Xue L, Su Z, Zhang C. Transforming Weakness into Strength: Photothermal-Therapy-Induced Inflammation Enhanced Cytopharmaceutical Chemotherapy as a Combination Anticancer Treatment. Adv Mater. 2019;31(5): e1805936.

    PubMed  Google Scholar 

  131. Tang L, Zheng Y, Melo MB, Mabardi L, Castano AP, Xie YQ, Li N, Kudchodkar SB, Wong HC, Jeng EK, Maus MV, Irvine DJ. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat Biotechnol. 2018;36(8):707–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hao M, Hou S, Li W, Li K, Xue L, Hu Q, Zhu L, Chen Y, Sun H, Ju C, Zhang C. Combination of metabolic intervention and T cell therapy enhances solid tumor immunotherapy. Sci Transl Med. 2020;12(571): eaaz6667.

  133. Shields CWt, Evans MA, Wang LL, Baugh N, Iyer S, Wu D, Zhao Z, Pusuluri A, Ukidve A, Pan DC, Mitragotri S. Cellular backpacks for macrophage immunotherapy. Sci Adv. 2020;6(18):eaaz6579.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS AND DISCLOSURES

The authors thank the public platform of State Key Laboratory of Natural Medicines.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81973270, 81930099, 82130102, 81773664), the Natural Science Foundation of Jiangsu Province (No. BK20212011), the Natural Science Foundation of Jiangsu Province of China for Excellent Young Scholars (No. BK20190078), "Double First-Class" University project (No. CPU2018GY47, CPU2018GF10), 111 Project from the Ministry of Education of China and the State Administration of Foreign Expert Affairs of China (No.111–2-07, B17047), and the Open Project of State Key Laboratory of Natural Medicines (No. SKLNMZZ202017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Can Zhang or Zhigui Su.

Ethics declarations

Conflict of interest statement

The authors declare no conflict of interest and no competing financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Omonova Tuychi qizi, C., Mohamed Khamis, A. et al. Nanotechnology for Enhanced Cytoplasmic and Organelle Delivery of Bioactive Molecules to Immune Cells. Pharm Res 39, 1065–1083 (2022). https://doi.org/10.1007/s11095-022-03284-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03284-0

KEY WORDS

Navigation