Skip to main content

Advertisement

Log in

The Use of Physiologically Based Pharmacokinetic Analyses—in Biopharmaceutics Applications -Regulatory and Industry Perspectives

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The use of physiologically based pharmacokinetic (PBPK) modeling to support the drug product quality attributes, also known as physiologically based biopharmaceutics modeling (PBBM) is an evolving field and the interest in using PBBM is increasing. The US-FDA has emphasized on the use of patient centric quality standards and clinically relevant drug product specifications over the years. Establishing an in vitro in vivo link is an important step towards achieving the goal of patient centric quality standard. Such a link can aid in constructing a bioequivalence safe space and establishing clinically relevant drug product specifications. PBBM is an important tool to construct a safe space which can be used during the drug product development and lifecycle management. There are several advantages of using the PBBM approach, though there are also a few challenges, both with in vitro methods and in vivo understanding of drug absorption and disposition, that preclude using this approach and therefore further improvements are needed. In this review we have provided an overview of experience gained so far and the current perspective from regulatory and industry point of view. Collaboration between scientists from regulatory, industry and academic fields can further help to advance this field and deliver on promises that PBBM can offer towards establishing patient centric quality standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wagner JG. Biopharmaceutics: Gastrointestinal Absorption Aspects. Antibiot Chemother. 1964;12:53–84.

    Article  CAS  PubMed  Google Scholar 

  2. Wagner JG. Biopharmaceutics: absorption aspects. J Pharm Sci. 1961;50:359–87.

    Article  CAS  PubMed  Google Scholar 

  3. Ho NFH, Merkle HP, Higuchi WI. Quantitative, mechanistic and physiologically realistic approach to the biopharmaceutical design of oral drug delivery systems. Drug Dev Ind Pharm. 1983;9(7):1111–84.

  4. Dressman JB, Fleisher D, Amidon GL. Physicochemical model for dose-dependent drug absorption. J Pharm Sci. 1984;73(9):1274–9.

    Article  CAS  PubMed  Google Scholar 

  5. Dressman JB, Fleisher D. Mixing-tank model for predicting dissolution rate control or oral absorption. J Pharm Sci. 1986;75(2):109–16.

    Article  CAS  PubMed  Google Scholar 

  6. Sinko PJ, Leesman GD, Amidon GL. Predicting fraction dose absorbed in humans using a macroscopic mass balance approach. Pharm Res. 1991;8(8):979–88.

    Article  CAS  PubMed  Google Scholar 

  7. Yu LX, Crison JR, Amidon GL. Compartmental transit and dispersion model analysis of small intestinal transit flow in humans. Int J Pharm. 1996;140(1):111–8.

  8. Yu LX, Lipka E, Crison JR, Amidon GL. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv Drug Deliv Rev. 1996;19(3):359–76.

    Article  CAS  PubMed  Google Scholar 

  9. Yu LX, Amidon GL. Characterization of small intestinal transit time distribution in humans. Int J Pharm. 1998;171(2):157–63.

  10. Yu LX, Amidon GL. A compartmental absorption and transit model for estimating oral drug absorption. Int J Pharm. 1999;186(2):119–25.

    Article  CAS  PubMed  Google Scholar 

  11. Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50(Suppl 1):S41-67.

    Article  CAS  PubMed  Google Scholar 

  12. Jamei M. Recent Advances in Development and Application of Physiologically-Based Pharmacokinetic (PBPK) Models: a Transition from Academic Curiosity to Regulatory Acceptance. Curr Pharmacol Rep. 2016;2:161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stamatis SD, Rose JP. Lilly Absorption Modeling Platform: A Tool for Early Absorption Assessment. Mol Pharm. 2022;19(1):213–26.

    Article  CAS  PubMed  Google Scholar 

  14. Kostewicz ES, Aarons L, Bergstrand M, Bolger MB, Galetin A, Hatley O, et al. PBPK models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2014;57:300–21.

    Article  CAS  PubMed  Google Scholar 

  15. Mudie DM, Murray K, Hoad CL, Pritchard SE, Garnett MC, Amidon GL, et al. Quantification of gastrointestinal liquid volumes and distribution following a 240 mL dose of water in the fasted state. Mol Pharm. 2014;11(9):3039–47.

    Article  CAS  PubMed  Google Scholar 

  16. Hens B, Bolger MB. Application of a Dynamic Fluid and pH Model to Simulate Intraluminal and Systemic Concentrations of a Weak Base in GastroPlus(). J Pharm Sci. 2019;108(1):305–15.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Lionberger RA, Davit BM, Yu LX. Utility of physiologically based absorption modeling in implementing Quality by Design in drug development. AAPS J. 2011;13(1):59–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Willmann S, Schmitt W, Keldenich J, Lippert J, Dressman JB. A physiological model for the estimation of the fraction dose absorbed in humans. J Med Chem. 2004;47(16):4022–31.

    Article  CAS  PubMed  Google Scholar 

  19. Abend A, Heimbach T, Cohen M, Kesisoglou F, Pepin X, Suarez-Sharp S. Dissolution and Translational Modeling Strategies Enabling Patient-Centric Drug Product Development: the M-CERSI Workshop Summary Report. The AAPS journal. 2018;20(3).

  20. Pepin XJH, Parrott N, Dressman J, Delvadia P, Mitra A, Zhang X, et al. Current State and Future Expectations of Translational Modeling Strategies to Support Drug Product Development, Manufacturing Changes and Controls: A Workshop Summary Report. J Pharm Sci. 2021;110:555–66.

    Article  CAS  PubMed  Google Scholar 

  21. Mitra A, Suarez-Sharp S, Pepin XJH, Flanagan T, Zhao Y, Kotzagiorgis E, et al. Applications of Physiologically Based Biopharmaceutics Modeling (PBBM) to Support Drug Product Quality: A Workshop Summary Report. J Pharm Sci. 2021;110(2):594–609.

    Article  CAS  PubMed  Google Scholar 

  22. Hens B, Sinko PD, Job N, Dean M, Al-Gousous J, Salehi N, et al. Formulation predictive dissolution (fPD) testing to advance oral drug product development: An introduction to the US FDA funded '21st Century BA/BE' project. Int J Pharm. 2018;548(1):120–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao P, Zhang L, Grillo JA, Liu Q, Bullock JM, Moon YJ, et al. Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther. 2011;89(2):259–67.

    Article  CAS  PubMed  Google Scholar 

  24. U. S. Food and Drug Administration. Draft Guidance for Industry: The Use of Physiologically Based Pharmacokinetic Analyses — Biopharmaceutics Applications for Oral Drug Product Development, Manufacturing Changes, and Controls. 2020. Available from: https://www.fda.gov/media/142500/download. Accessed 15 Dec 2021.

  25. Tsakalozou E, Alam K, Babiskin A, Zhao L. Physiologically-Based Pharmacokinetic Modeling to Support Determination of Bioequivalence for Dermatological Drug Products: Scientific and Regulatory Considerations. Clin Pharmacol Ther. 2021.

  26. The Center for Research on Complex Generics (CRCG): The University of Maryland, Baltimore and University of Michigan. 2021. Available from: http://www.complexgenerics.org/PBPK2021/.

  27. Suarez-Sharp S, Cohen M, Kesisoglou F, Abend A, Marroum P, Delvadia P, et al. Applications of Clinically Relevant Dissolution Testing: Workshop Summary Report. AAPS J. 2018;20(6):93.

    Article  PubMed  Google Scholar 

  28. Heimbach T, Suarez-Sharp S, Kakhi M, Holmstock N, Olivares-Morales A, Pepin X, et al. Dissolution and Translational Modeling Strategies Toward Establishing an In Vitro-In Vivo Link—a Workshop Summary Report. The AAPS Journal. 2019;21(2).

  29. U.S FDA CDER. CDER patient-focused drug development. [Available from: https://www.fda.gov/drugs/development-approval-process-drugs/cder-patient-focused-drug-development].

  30. J W. The concept of pharmaceutical quality. American Pharmaceutical Review. 2004;7(6):10–5.

  31. Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, et al. Understanding pharmaceutical quality by design. AAPS J. 2014;16(4):771–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Anand O. Clinically Relevant Dissolution Specifications a Biopharmaceutics’ Risk Based Approach: an FDA perspective: The Academy of Pharmaceutical Sciences; 2021 [Available from: https://www.apsgb.co.uk/wp-content/uploads/2021/05/Clinically-Relevant-Dissolution-Specifications-an-FDA-Perspective-__Om-Anand.pdf.

  33. Raines K. PBPK Biopharmaceutics Guidance and progress on Risk Assessment 2021 [Available from: http://www.complexgenerics.org/media/SOP/complexgenerics/pdf/Conference-Slides/D2-04%20Kimberly%20Raines_PBPKGuidanceRiskAssessment.pdf

  34. Parrott N, Hainzl D, Scheubel E, Krimmer S, Boetsch C, Guerini E, et al. Physiologically Based Absorption Modelling to Predict the Impact of Drug Properties on Pharmacokinetics of Bitopertin. AAPS J. 2014;16(5):1077–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Paul S. Challenges and strategies in establishing an in-vitro invivo link, in Dissolution and translational modeling strategies enabling patient centric product development. 2017.

  36. U. S. Food and Drug Administration. Guidance for Industry: Extended Release Oral Dosage Forms: Development, Evaluation, and Application of In Vitro/In Vivo Correlations. 1997. Available at: https://www.fda.gov/media/70939/download. Accessed 15 Dec 2021.

  37. Wu F, Shah H, Li M, Duan P, Zhao P, Suarez S, et al. Biopharmaceutics Applications of Physiologically Based Pharmacokinetic Absorption Modeling and Simulation in Regulatory Submissions to the US Food and Drug Administration for New Drugs. AAPS J. 2021;23(2):1–14.

    Article  Google Scholar 

  38. Heimbach T, Kesisoglou F, Novakovic J, Tistaert C, Mueller-Zsigmondy M, Kollipara S, et al. Establishing the Bioequivalence Safe Space for Immediate-Release Oral Dosage Forms using Physiologically Based Biopharmaceutics Modeling (PBBM): Case Studies. J Pharm Sci. 2021;110(12):3896–906.

    Article  CAS  PubMed  Google Scholar 

  39. Kato T, Nakagawa H, Mikkaichi T, Miyano T, Matsumoto Y, Ando S. Establishment of a clinically relevant specification for dissolution testing using physiologically based pharmacokinetic (PBPK) modeling approaches. Eur J Pharm Biopharm. 2020;151:45–52.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Y SS. FDA expectations in building a safe space to gain regulatory flexibility based on PBBM. 2019. Available from: https://cersi.umd.edu/sites/cersi.umd.edu/files/Day%203-1%20Zhao%20Suarez%20LM.pdf.

  41. Tistaert C. Case Study: Bridging physiology-based dissolution testing to quality control testing using PBBM University of Maryland, College Park, MD2019 [Available from: https://cersi.umd.edu/file/day-3-5-christophe-tistaert-finalpdf.

  42. Fan J, Zhang X, Zhao L. Utility of Physiologically Based Pharmacokinetic Absorption Modeling to Predict the Impact of Salt-to-Base Conversion on Prasugrel HCl Product Bioequivalence in the Presence of Proton Pump Inhibitors. AAPS J. 2017;19(5):1479–86.

    Article  CAS  PubMed  Google Scholar 

  43. Butler J, Hens B, Vertzoni M, Brouwers J, Berben P, Dressman J, et al. In vitro models for the prediction of in vivo performance of oral dosage forms: Recent progress from partnership through the IMI OrBiTo collaboration. Eur J Pharm Biopharm. 2019;136:70–83.

    Article  CAS  PubMed  Google Scholar 

  44. Taylor LS, Zhang GGZ. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv Drug Deliv Rev. 2016;101:122–42.

    Article  CAS  PubMed  Google Scholar 

  45. Heimbach T, Kesisoglou F, Novakovic J, Tistaert C, Mueller-Zsigmondy M, Kollipara S, et al. Establishing the Bioequivalence Safe Space for Immediate-Release Oral Dosage Forms using Physiologically Based Biopharmaceutics Modeling (PBBM): Case Studies. Journal of Pharmaceutical Sciences. 2021.

  46. Parrott N, Suarez-Sharp S, Kesisoglou F, Pathak SM, Good D, Wagner C, et al. Best Practices in the Development and Validation of Physiologically Based Biopharmaceutics Modeling. A Workshop Summary Report. J Pharm Sci. 2021;110(2):584–93.

  47. Delvadia PR, Barr WH, Karnes HT. A biorelevant in vitro release/permeation system for oral transmucosal dosage forms. Int J Pharm. 2012;430(1–2):104–13.

    Article  CAS  PubMed  Google Scholar 

  48. Willmann S, Thelen K, Lippert J. Integration of dissolution into physiologically-based pharmacokinetic models III: PK-Sim(R). J Pharm Pharmacol. 2012;64(7):997–1007.

    Article  CAS  PubMed  Google Scholar 

  49. Elagolix Tablets, NDA 210450 Food and Drug Administration. 2018. [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210450Orig1s000ChemR.pdf].

  50. Miao L, Mousa YM, Zhao L, Raines K, Seo P, Wu F. Using a Physiologically Based Pharmacokinetic Absorption Model to Establish Dissolution Bioequivalence Safe Space for Oseltamivir in Adult and Pediatric Populations. AAPS J. 2020;22(5):107.

    Article  CAS  PubMed  Google Scholar 

  51. Suarez-Sharp S, Li M, Duan J, Shah H, Seo P. Regulatory Experience with In Vivo In Vitro Correlations (IVIVC) in New Drug Applications. AAPS J. 2016;18(6):1379–90.

    Article  CAS  PubMed  Google Scholar 

  52. Triclabendazole Tablets, NDA 208711, Food and Drug Administration. 2018. [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/208711Orig1s000ChemR.pdf].

  53. Pepin XJ, Flanagan TR, Holt DJ, Eidelman A, Treacy D, Rowlings CE. Justification of Drug Product Dissolution Rate and Drug Substance Particle Size Specifications Based on Absorption PBPK Modeling for Lesinurad Immediate Release Tablets. Mol Pharm. 2016;13(9):3256–69.

    Article  CAS  PubMed  Google Scholar 

  54. Duvelisib Capsules, NDA211155, Food and Drug Administration. 2018. [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/211155Orig1Orig2s000ChemR.pdf].

  55. Kesisoglou F, Wang M, Galipeau K, Harmon P, Okoh G, Xu W. Effect of Amorphous Nanoparticle Size on Bioavailability of Anacetrapib in Dogs. J Pharm Sci. 2019;108(9):2917–25.

    Article  CAS  PubMed  Google Scholar 

  56. Đuranović M, Madžarević M, Ivković B, Ibrić S, Cvijić S. The evaluation of the effect of different superdisintegrants on the drug release from FDM 3D printed tablets through different applied strategies: In vitro-in silico assessment. Int J Pharm. 2021;610.

    Article  PubMed  CAS  Google Scholar 

  57. Cámara-Martinez I, Blechar JA, Ruiz-Picazo A, Garcia-Arieta A, Calandria C, Merino-Sanjuan V, et al. Level A IVIVC for immediate release tablets confirms in vivo predictive dissolution testing for ibuprofen. Int J Pharm. 2022;614.

    Article  PubMed  CAS  Google Scholar 

  58. Kesisoglou F, Mitra A. Application of Absorption Modeling in Rational Design of Drug Product Under Quality-by-Design Paradigm. AAPS J. 2015;17(5):1224–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pepin XJH, Moir AJ, Mann JC, Sanderson NJ, Barker R, Meehan E, et al. Bridging in vitro dissolution and in vivo exposure for acalabrutinib. Part II. A mechanistic PBPK model for IR formulation comparison, proton pump inhibitor drug interactions, and administration with acidic juices. European journal of pharmaceutics and biopharmaceutics. 2019;142:435–48.

  60. Dickinson PA, Lee WW, Stott PW, Townsend AI, Smart JP, Ghahramani P, et al. Clinical Relevance of Dissolution Testing in Quality by Design. AAPS J. 2008;10(2):380–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Jereb R, Kristl A, Mitra A. Prediction of fasted and fed bioequivalence for immediate release drug products using physiologically based biopharmaceutics modeling (PBBM). Eur J Pharm Sci. 2020;155:105554.

    Article  CAS  PubMed  Google Scholar 

  62. Stillhart C, Pepin X, Tistaert C, Good D, Van Den Bergh A, Parrott N, et al. PBPK Absorption Modeling: Establishing the In Vitro–In Vivo Link—Industry Perspective. The AAPS Journal. 2019;21(2).

  63. Loisios-Konstantinidis I, Cristofoletti R, Fotaki N, Turner DB, Dressman J. Establishing virtual bioequivalence and clinically relevant specifications using in vitro biorelevant dissolution testing and physiologically-based population pharmacokinetic modeling. case example: Naproxen. European Journal of Pharmaceutical Sciences. 2020;143:105170.

  64. Macwan JS, Fraczkiewicz G, Bertolino M, Krüger P, Peters S-A. Application of physiologically based biopharmaceutics modeling to understand the impact of dissolution differences on in vivo performance of immediate release products: The case of bisoprolol. 2021;10(6):622-32.

  65. Farhan N, Cristofoletti R, Basu S, Kim S, Lingineni K, Jiang S, et al. Physiologically-based pharmacokinetics modeling to investigate formulation factors influencing the generic substitution of dabigatran etexilate. 2021;10(3):199-210

  66. García MA, Bolger MB, Suarez-Sharp S, Langguth P. Predicting pharmacokinetics of multisource acyclovir oral products through physiologically based biopharmaceutics modeling. Journal of Pharmaceutical Sciences. 2021.

  67. Jaiswal S, Ahmed T, Kollipara S, Bhargava M, Chachad S. Development, validation and application of Physiologically Based Biopharmaceutics Model to justify the change in dissolution specifications for DRL ABC Extended release tablets. Drug Development and Industrial Pharmacy. 2021(just-accepted):1–31.

  68. Wu X, Zhang X, Xu R, Shaik IH, Venkataramanan R. Physiologically based pharmacokinetic modelling of treprostinil after intravenous injection and extended‐release oral tablet administration in healthy volunteers: An extrapolation to other patient populations including patients with hepatic impairment. British Journal of Clinical Pharmacology. 2021.

  69. Matsui K, Takeuchi S, Haruna Y, Yamane M, Shimizu T, Hatsuma Y, et al. Transverse comparison of mannitol content in marketed drug products: Implication for no-effect dose of sugar alcohols on oral drug absorption. Journal of Drug Delivery Science and Technology. 2020;57:101728.

    Article  CAS  Google Scholar 

  70. Yamane M, Matsui K, Sugihara M, Tokunaga Y. The Provisional No-Effect Threshold of Sugar Alcohols on Oral Drug Absorption Estimated by Physiologically Based Biopharmaceutics Model. J Pharm Sci. 2021;110(1):467–77.

    Article  CAS  PubMed  Google Scholar 

  71. Jamei M, Abrahamsson B, Brown J, Bevernage J, Bolger MB, Heimbach T, et al. Current status and future opportunities for incorporation of dissolution data in PBPK modeling for pharmaceutical development and regulatory applications: OrBiTo consortium commentary. Eur J Pharm Biopharm. 2020;155:55–68.

    Article  CAS  PubMed  Google Scholar 

  72. Klumpp L, Dressman J. Physiologically based pharmacokinetic model outputs depend on dissolution data and their input: Case examples glibenclamide and dipyridamole. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2020;151:105380.

    Article  CAS  Google Scholar 

  73. Takano R, Sugano K, Higashida A, Hayashi Y, Machida M, Aso Y, et al. Oral absorption of poorly water-soluble drugs: computer simulation of fraction absorbed in humans from a miniscale dissolution test. Pharm Res. 2006;23(6):1144–56.

    Article  CAS  PubMed  Google Scholar 

  74. Pohl P, Saparov SM, Antonenko YN. The Size of the Unstirred Layer as a Function of the Solute Diffusion Coefficient. Biophys J. 1998;75(3):1403–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hofsäss MA, Dressman J. Suitability of the z-Factor for Dissolution Simulation of Solid Oral Dosage Forms: Potential Pitfalls and Refinements. J Pharm Sci. 2020;109(9):2735–45.

    Article  PubMed  CAS  Google Scholar 

  76. Pepin X, Blanchon S, Couarraze G. Powder dynamic contact angle data in the pharmaceutical industry. Pharm Sci Technolo Today. 1999;2(3):111–8.

    Article  CAS  Google Scholar 

  77. Pathak SM, Ruff A, Kostewicz ES, Patel N, Turner DB, Jamei M. Model-Based Analysis of Biopharmaceutic Experiments To Improve Mechanistic Oral Absorption Modeling: An Integrated in Vitro in Vivo Extrapolation Perspective Using Ketoconazole as a Model Drug. Mol Pharm. 2017;14(12):4305–20.

    Article  CAS  PubMed  Google Scholar 

  78. Pepin XJH, Sanderson NJ, Blanazs A, Grover S, Ingallinera TG, Mann JC. Bridging in vitro dissolution and in vivo exposure for acalabrutinib. Part I Mechanistic modelling of drug product dissolution to derive a P-PSD for PBPK model input. European Journal of Pharmaceutics and Biopharmaceutics. 2019;142:421–34.

    Article  CAS  PubMed  Google Scholar 

  79. Pepin X, Goetschy M, Abrahmsén-Alami S. Mechanistic models for USP2 dissolution apparatus, including fluid hydrodynamics and sedimentation. Journal of Pharmaceutical Sciences. 2021.

  80. Laisney M, Heimbach T, Mueller-Zsigmondy M, Blumenstein L, Costa R, Ji Y. Physiologically Based Biopharmaceutics Modeling to Demonstrate Virtual Bioequivalence and Bioequivalence Safe-space for Ribociclib which has Permeation Rate-controlled Absorption. Journal of Pharmaceutical Sciences. 2021.

  81. Kesisoglou F, Chung J, van Asperen J, Heimbach T. Physiologically Based Absorption Modeling to Impact Biopharmaceutics and Formulation Strategies in Drug Development-Industry Case Studies. J Pharm Sci. 2016;105(9):2723–34.

    Article  CAS  PubMed  Google Scholar 

  82. Duan JZ. A Biopharmetrics Approach for Drug Product Quality Control with Clinical Relevance. J Pharm Sci. 2021;110(1):478–88.

    Article  CAS  PubMed  Google Scholar 

  83. Pepin X, editor Use of IVIVc and IVIVe to support formulation development - Industrial case studies. AAPS meeting - 4th November 2014; 2014; San Diego, USA.

  84. Stillhart C, Parrott NJ, Lindenberg M, Chalus P, Bentley D, Szepes A. Characterising Drug Release from Immediate-Release Formulations of a Poorly Soluble Compound, Basmisanil, Through Absorption Modelling and Dissolution Testing. AAPS J. 2017;19(3):827–36.

    Article  CAS  PubMed  Google Scholar 

  85. Watson KJ, Davis J, Jones HM. Application of Physiologically Based Pharmacokinetic Modeling to Understanding the Clinical Pharmacokinetics of UK-369,003. Drug Metab Dispos. 2011;39(7):1203–13.

    Article  CAS  PubMed  Google Scholar 

  86. Ni Z, Talattof A, Fan J, Tsakalozou E, Sharan S, Sun D, et al. Physiologically Based Pharmacokinetic and Absorption Modeling for Osmotic Pump Products. AAPS J. 2017;19(4):1045–53.

    Article  CAS  PubMed  Google Scholar 

  87. Schiller C, Frohlich CP, Giessmann T, Siegmund W, Monnikes H, Hosten N, et al. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 2005;22(10):971–9.

    Article  CAS  PubMed  Google Scholar 

  88. Sutton SC. Role of physiological intestinal water in oral absorption. AAPS J. 2009;11(2):277–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values. Ann ICRP. 2002;32(3–4):1–277.

    Article  Google Scholar 

  90. Kesisoglou F, Xia B, Agrawal NGB. Comparison of Deconvolution-Based and Absorption Modeling IVIVC for Extended Release Formulations of a BCS III Drug Development Candidate. AAPS J. 2015;17(6):1492–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Eckernäs E, Tannergren C. Physiologically Based Biopharmaceutics Modeling of Regional and Colon Absorption in Dogs. Mol Pharm. 2021;18(4):1699–710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Paraiso RL, Rose RH, Fotaki N, McAllister M, Dressman JB. The use of PBPK/PD to establish clinically relevant dissolution specifications for zolpidem immediate release tablets. Eur J Pharm Sci. 2020;155:105534.

    Article  CAS  PubMed  Google Scholar 

  93. Brown J, Chien C, Timmins P, Dennis A, Doll W, Sandefer E, et al. Compartmental absorption modeling and site of absorption studies to determine feasibility of an extended-release formulation of an HIV-1 attachment inhibitor phosphate ester prodrug. J Pharm Sci. 2013;102(6):1742–51.

    Article  CAS  PubMed  Google Scholar 

  94. Salehi N, Al-Gousous J, Mudie DM, Amidon GL, Ziff RM, Amidon GE. Hierarchical Mass Transfer Analysis of Drug Particle Dissolution, Highlighting the Hydrodynamics, pH, Particle Size, and Buffer Effects for the Dissolution of Ionizable and Nonionizable Drugs in a Compendial Dissolution Vessel. Mol Pharm. 2020;17(10):3870–84.

    Article  CAS  PubMed  Google Scholar 

  95. Worsoe J, Fynne L, Gregersen T, Schlageter V, Christensen LA, Dahlerup JF, et al. Gastric transit and small intestinal transit time and motility assessed by a magnet tracking system. BMC Gastroenterol. 2011;11:145.

    Article  PubMed  Google Scholar 

  96. Koziolek M, Grimm M, Schneider F, Jedamzik P, Sager M, Kühn JP, et al. Navigating the human gastrointestinal tract for oral drug delivery: Uncharted waters and new frontiers. Adv Drug Deliv Rev. 2016;101:75–88.

    Article  CAS  PubMed  Google Scholar 

  97. Rao SSC, Sadeghi P, Beaty J, Kavlock R. Ambulatory 24-Hour Colonic Manometry in Slow-Transit Constipation. Am J Gastroenterol. 2004;99(12):2405–16.

    Article  PubMed  Google Scholar 

  98. Mendes TC, Simon A, Menezes JCV, Pinto EC, Cabral LM, de Sousa VP. Development of USP Apparatus 3 Dissolution Method with IVIVC for Extended Release Tablets of Metformin Hydrochloride and Development of a Generic Formulation. Chem Pharm Bull (Tokyo). 2019;67(1):23–31.

    Article  Google Scholar 

  99. Schick P, Sager M, Wegner F, Wiedmann M, Schapperer E, Weitschies W, et al. Application of the GastroDuo as an in Vitro Dissolution Tool To Simulate the Gastric Emptying of the Postprandial Stomach. Mol Pharm. 2019;16(11):4651–60.

    Article  CAS  PubMed  Google Scholar 

  100. Hopgood M, Reynolds G, Barker R. Using Computational Fluid Dynamics to Compare Shear Rate and Turbulence in the TIM-Automated Gastric Compartment With USP Apparatus II. J Pharm Sci. 2018;107(7):1911–9.

    Article  CAS  PubMed  Google Scholar 

  101. Barker R, Abrahamsson B, Kruusmägi M. Application and Validation of an Advanced Gastrointestinal In Vitro Model for the Evaluation of Drug Product Performance in Pharmaceutical Development. J Pharm Sci. 2014;103(11):3704–12.

    Article  CAS  PubMed  Google Scholar 

  102. Bermejo M, Hens B, Dickens J, Mudie D, Paixão P, Tsume Y, et al. A Mechanistic Physiologically-Based Biopharmaceutics Modeling (PBBM) Approach to Assess the In Vivo Performance of an Orally Administered Drug Product: From IVIVC to IVIVP. Pharmaceutics. 2020;12(1).

  103. Li M, Zhang X, Wu D, Anand O, Chen H, Raines K, et al. Understanding In Vivo Dissolution of Immediate Release (IR) Solid Oral Drug Products Containing Weak Acid BCS Class 2 (BCS Class 2a) Drugs. AAPS J. 2021;23(6):113.

    Article  CAS  PubMed  Google Scholar 

  104. Komasaka T, Dressman J. Simulation of oral absorption from non-bioequivalent dosage forms of the salt of raltegravir, a poorly soluble acidic drug, using a physiologically based biopharmaceutical modeling (PBBM) approach. Eur J Pharm Sci. 2021;157:105630.

    Article  CAS  PubMed  Google Scholar 

  105. Langguth P, Lee KM, Spahn-Langguth H, Amidon GL. Variable gastric emptying and discontinuities in drug absorption profiles: Dependence of rates and extent of cimetidine absorption on motility phase and pH. Biopharm Drug Dispos. 1994;15(9):719–46.

    Article  CAS  PubMed  Google Scholar 

  106. Andreas CJ, Pepin X, Markopoulos C, Vertzoni M, Reppas C, Dressman J. Mechanistic investigation of the negative food effect of modified release zolpidem. Eur J Pharm Sci. 2017;102:284–98.

    Article  CAS  PubMed  Google Scholar 

  107. Pepin X. The use of PBBM and biomarkers to provide detailed understanding of in vivo dissolution and absorption for Acalabrutinib University of Maryland, College Park, MD2019 [Available from: https://cersi.umd.edu/sites/cersi.umd.edu/files/Day%203%20-%206%20Xavier%20Pepin%20Final.pdf.

  108. Weitschies W, Friedrich C, Wedemeyer RS, Schmidtmann M, Kosch O, Kinzig M, et al. Bioavailability of amoxicillin and clavulanic acid from extended release tablets depends on intragastric tablet deposition and gastric emptying. Eur J Pharm Biopharm. 2008;70(2):641–8.

    Article  CAS  PubMed  Google Scholar 

  109. Weitschies W, Wedemeyer RS, Kosch O, Fach K, Nagel S, Soderlind E, et al. Impact of the intragastric location of extended release tablets on food interactions. J Control Release. 2005;108(2–3):375–85.

    Article  CAS  PubMed  Google Scholar 

  110. Parrott N, Suarez-Sharp S, Kesisoglou F, Pathak SM, Good D, Wagner C, et al. Best Practices in the Development and Validation of Physiologically Based Biopharmaceutics Modeling. A Workshop Summary Report. Journal of Pharmaceutical Sciences. 2021;110:584–93.

  111. Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the ‘bottom up’ and ‘top down’ approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br J Clin Pharmacol. 2013;79(1):48–55.

    Article  PubMed Central  CAS  Google Scholar 

  112. Pepin X, Huckle JE, Alluri RV, Basu S, Dodd S, Parrott N, et al. Understanding mechanisms of food effect and developing reliable PBPK models using a middle-out approach. AAPS J. 2021;23.

  113. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ); https://iqconsortium.org/

  114. Kuemmel C, Yang Y, Zhang X, Florian J, Zhu H, Tegenge M, et al. Consideration of a Credibility Assessment Framework in Model-Informed Drug Development: Potential Application to Physiologically-Based Pharmacokinetic Modeling and Simulation. CPT: Pharmacometrics & Systems Pharmacology. 2020;9(1):21–8.

  115. Davit B, Chen M-L, Conner D, Haidar S, Kim S, Lee C, et al. Implementation of a Reference-Scaled Average Bioequivalence Approach for Highly Variable Generic Drug Products by the US Food and Drug Administration. AAPS J. 2012;14(4):915–24.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mitra A, Suarez-Sharp S, Pepin XJH, Flanagan T, Zhao Y, Kotzagiorgis E, et al. Applications of Physiologically Based Biopharmaceutics Modeling (PBBM) to support Drug Product Quality: A Workshop Summary Report. J Pharm Sci. 2021;110:594–609.

    Article  CAS  PubMed  Google Scholar 

  117. Wong Chi H, Siah Kien WEI, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics. 2019;20(2):273–86.

    Article  PubMed  Google Scholar 

  118. Achour B, Al-Majdoub ZM, Grybos-Gajniak A, Lea K, Kilford P, Zhang M, et al. Liquid Biopsy Enables Quantification of the Abundance and Interindividual Variability of Hepatic Enzymes and Transporters. Clin Pharmacol Ther. 2021;109(1):222–32.

    Article  CAS  PubMed  Google Scholar 

  119. Polasek TM, Rostami-Hodjegan A. Virtual Twins: Understanding the Data Required for Model-Informed Precision Dosing. Clin Pharmacol Ther. 2020;107(4):742–5.

    Article  PubMed  Google Scholar 

  120. Darwich AS, Polasek TM, Aronson JK, Ogungbenro K, Wright DFB, Achour B, et al. Model-Informed Precision Dosing: Background, Requirements, Validation, Implementation, and Forward Trajectory of Individualizing Drug Therapy. Annu Rev Pharmacol Toxicol. 2021;61(1):225–45.

    Article  CAS  PubMed  Google Scholar 

  121. Ferreira A, Lapa R, Vale N. PBPK Modeling and Simulation and Therapeutic Drug Monitoring: Possible Ways for Antibiotic Dose Adjustment. Processes. 2021;9(11):2087.

    Article  Google Scholar 

  122. Jereb R, Opara J, Bajc A, Petek B. Evaluating the Impact of Physiological Properties of the Gastrointestinal Tract On Drug In Vivo Performance Using Physiologically Based Biopharmaceutics Modeling and Virtual Clinical Trials. J Pharm Sci. 2021;110(8):3069–81.

    Article  CAS  PubMed  Google Scholar 

  123. Riethorst D, Mols R, Duchateau G, Tack J, Brouwers J, Augustijns P. Characterization of Human Duodenal Fluids in Fasted and Fed State Conditions. J Pharm Sci. 2016;105(2):673–81.

    Article  CAS  PubMed  Google Scholar 

  124. Guiastrennec BS DP, Hansen M, Bagger JL, Lund A, Rehfeld JF, Alskar O, Vilsbøll T, Knop FK, Bergstrand M. Mechanism‐Based Modeling of Gastric Emptying Rate and Gallbladder Emptying in Response to Caloric Intake. CPT: Pharmacomet Syst Pharmacol. 2016;5(12):692–700.

  125. Rabbie SC, Flanagan T, Martin PD, Basit AW. Inter-subject variability in intestinal drug solubility. Int J Pharm. 2015;485(1–2):229–34.

    Article  CAS  PubMed  Google Scholar 

  126. Hofsäss MA, Dressman J. Evaluation of Differences in Dosage Form Performance of Generics Using BCS-Based Biowaiver Specifications and Biopharmaceutical Modeling-Case Examples Amoxicillin and Doxycycline. J Pharm Sci. 2020;109(8):2437–53.

    Article  PubMed  CAS  Google Scholar 

  127. Gisolfi CV, Summers RW, Lambert GP, Xia T. Effect of beverage osmolality on intestinal fluid absorption during exercise. Journal of applied physiology (Bethesda, Md : 1985). 1998;85(5):1941–8.

  128. Lambert PGL, S., Welch R, Shi, X. Combined effects of glucose and fructose on fluid absorption from hypertonic carbohydrate-electrolyte beverages. Journal of Exercise Physiology. 2008;11(2):46–55.

  129. Grimm M, Koziolek M, Saleh M, Schneider F, Garbacz G, Kühn J-P, et al. Gastric Emptying and Small Bowel Water Content after Administration of Grapefruit Juice Compared to Water and Isocaloric Solutions of Glucose and Fructose: A Four-Way Crossover MRI Pilot Study in Healthy Subjects. Mol Pharm. 2018;15(2):548–59.

    Article  CAS  PubMed  Google Scholar 

  130. Arbós P. Influence of the surface characteristics of PVM/MA nanoparticles on their bioadhesive properties. J Control Release. 2003;89(1):19–30.

    Article  PubMed  CAS  Google Scholar 

  131. Lipka E, Lee ID, Langguth P, Spahn-Langguth H, Mutschler E, Amidon GL. Celiprolol double-peak occurrence and gastric motility: nonlinear mixed effects modeling of bioavailability data obtained in dogs. J Pharmacokinet Biopharm. 1995;23(3):267–86.

    Article  CAS  PubMed  Google Scholar 

  132. Collins PJ, Houghton LA, Read NW, Horowitz M, Chatterton BE, Heddle R, et al. Role of the proximal and distal stomach in mixed solid and liquid meal emptying. Gut. 1991;32(6):615–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Anjiki H, Sanaka M, Kuyama Y. Dual effects of rabeprazole on solid-phase gastric emptying assessed by the 13C-octanoate breath test. Digestion. 2005;72(2–3):189–94.

    Article  CAS  PubMed  Google Scholar 

  134. Sager M, Jedamzik P, Merdivan S, Grimm M, Schneider F, Kromrey M-L, et al. Low dose caffeine as a salivary tracer for the determination of gastric water emptying in fed and fasted state: A MRI validation study. Eur J Pharm Biopharm. 2018;127:443–52.

    Article  CAS  PubMed  Google Scholar 

  135. Meyer JH, Dressman J, Fink A, Amidon G. Effect of size and density on canine gastric emptying of nondigestible solids. Gastroenterology. 1985;89(4):805–13.

    Article  CAS  PubMed  Google Scholar 

  136. Grimm M, Scholz E, Koziolek M, Kuhn JP, Weitschies W. Gastric Water Emptying under Fed State Clinical Trial Conditions Is as Fast as under Fasted Conditions. Mol Pharm. 2017;14(12):4262–71.

    Article  CAS  PubMed  Google Scholar 

  137. Locatelli I, Mrhar A, Bogataj M. Gastric Emptying of Pellets under Fasting Conditions: A Mathematical Model. Pharm Res. 2009;26(7):1607–17.

    Article  CAS  PubMed  Google Scholar 

  138. Alskar OB J, Røge RM, Knop FK, Karlsson MO, Vilsbøll T, Kjellsson MC. Semimechanistic model describing gastric emptying and glucose absorption in healthy subjects and patients with type 2 diabetes. J Clin Pharmacol. 2016;56(3):340–8.

  139. Cucchiara S, Franzese A, Salvia G, Alfonsi L, Iula VD, Montisci A, et al. Gastric Emptying Delay and Gastric Electrical Derangement in IDDM. Diabetes Care. 1998;21(3):438–43.

    Article  CAS  PubMed  Google Scholar 

  140. Regårdh CG, Lundborg P, Persson BA. The effect of antacid, metoclopramide, and propantheline on the bioavailability of metoprolol and atenolol. Biopharm Drug Dispos. 1981;2(1):79–87.

    Article  PubMed  Google Scholar 

  141. Marathe PH, Wen Y, Norton J, Greene DS, Barbhaiya RH, Wilding IR. Effect of altered gastric emptying and gastrointestinal motility on metformin absorption. Br J Clin Pharmacol. 2000;50(4):325–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. de Waal T, Rubbens J, Grimm M, Vandecaveye V, Tack J, Weitschies W, et al. Exploring the Effect of Esomeprazole on Gastric and Duodenal Fluid Volumes and Absorption of Ritonavir. Pharmaceutics. 2020;12(7).

  143. Schulze JDR, Waddington WA, Ell PJ, Parsons GE, Coffin MD, Basit AW. Concentration-Dependent Effects of Polyethylene Glycol 400 on Gastrointestinal Transit and Drug Absorption. Pharm Res. 2003;20(12):1984–8.

    Article  CAS  PubMed  Google Scholar 

  144. Basit AW, Newton JM, Short MD, Waddington WA, Ell PJ, Lacey LF. The Effect of Polyethylene Glycol 400 on Gastrointestinal Transit: Implications for the Formulation of Poorly-Water Soluble Drugs. Pharm Res. 2001;18(8):1146–50.

    Article  CAS  PubMed  Google Scholar 

  145. Adkin D, Davis S, Sparrow R, Huckle P, Phillips A, Wilding I. The Effect of Different Concentrations of Mannitol in Solution on Small Intestinal Transit: Implications for Drug Absorption. Pharm Res. 1995;12(3):393–6.

    Article  CAS  PubMed  Google Scholar 

  146. Cvijić S, Parojčić J, Langguth P. Viscosity-mediated negative food effect on oral absorption of poorly-permeable drugs with an absorption window in the proximal intestine: In vitro experimental simulation and computational verification. Eur J Pharm Sci. 2014;61:40–53.

    Article  PubMed  CAS  Google Scholar 

  147. Radwan A, Amidon GL, Langguth P. Mechanistic investigation of food effect on disintegration and dissolution of BCS class III compound solid formulations: the importance of viscosity. Biopharm Drug Dispos. 2012;33(7):403–16.

    Article  CAS  PubMed  Google Scholar 

  148. Markl D, Zeitler JA. A Review of Disintegration Mechanisms and Measurement Techniques. Pharm Res. 2017;34(5):890–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hörter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 1997;25:3–14.

    Article  Google Scholar 

  150. Mitra A, Parrott N, Miller N, Lloyd R, Tistaert C, Heimbach T, et al. Prediction of pH-dependent drug-drug interactions for basic drugs using physiologically based biopharmaceutics modeling: industry case studies. J Pharm Sci. 2020;109(3):1380–94.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors have no conflicts to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Anand.

Ethics declarations

Disclaimer

This article reflects the views of the authors and should not be construed to represent FDA’s views or policies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 88 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, O., Pepin, X.J.H., Kolhatkar, V. et al. The Use of Physiologically Based Pharmacokinetic Analyses—in Biopharmaceutics Applications -Regulatory and Industry Perspectives. Pharm Res 39, 1681–1700 (2022). https://doi.org/10.1007/s11095-022-03280-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03280-4

KEY WORDS

Navigation