Skip to main content

Analysis of Magneto-Hyperthermia Duration in Nano-sized Drug Delivery System to Solid Tumors Using Intravascular-Triggered Thermosensitive-Liposome

Abstract

Computational models have been developed as a potential platform to identify bio-interactions that cannot be properly understood by experimental models. In the present study, a mathematical model has been employed to investigate the therapeutic response of drug-loaded thermosensitive liposome (TSL) following intravascular release paradigm. Thermal field created by an alternating magnetic field is utilized to release the drug within microvessels. Determining the time required for the application of magneto-hyperthermia is the main purpose of this study. Results show that applying a long-term continuous or pulsed hyperthermia can affect the concentration level of drugs in the extracellular space. The peak value of free and bound drug concentrations in the extracellular space is equal for all hyperthermia programs. Additionally, the concentrations of free and bound drugs are retained at a higher level in pulsed mode compared to the continuous mode (i.e., area under curve (AUC) of pulsed case is slightly higher than continuous case). However, there is no significant difference in bioavailability time. Hence, onset time of tumor growth is similar for different conditions. This study shows that the appropriate time to apply hyperthermia is post-bolus injection until reaching the peak concentration profile in extracellular space. Therefore, in clinical applications similar to the present study’s circumstances, continuous hyperthermia for 30 min can be a better choice. This study can be a useful guideline for experimental studies to reduce the number of in vivo tests as well as for clinical trials to make the right decision to provide optimal medication programs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability

All data used for this study are available from the author upon request.

REFERENCES

  1. Soltani M, Chen P. Numerical modeling of fluid flow in solid tumors. PloS one. 2011;6:e20344.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.

    CAS  PubMed  Article  Google Scholar 

  3. Lokerse WJ, Bolkestein M, ten Hagen TL, de Jong M, Eggermont AM, Grüll H, Koning GA. Investigation of particle accumulation, chemosensitivity and thermosensitivity for effective solid tumor therapy using thermosensitive liposomes and hyperthermia. Theranostics. 2016;6:1717.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    CAS  PubMed  Article  Google Scholar 

  5. Soltani M, Moradi Kashkooli F, Souri M, Zare Harofte S, Harati T, Khadem A, Haeri Pour M. Raahemifar K. Enhancing Clinical Translation of Cancer Using Nanoinformatics. Cancers. 2021;13:2481.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Souri M, Soltani M, Kashkooli FM, Shahvandi MK. Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. J Control Release. 2022;341:227–46.

    CAS  PubMed  Article  Google Scholar 

  7. Souri M, Soltani M, Kashkooli FM, Shahvandi MK, Chiani M, Shariati FS, Mehrabi MR, Munn LL. Towards principled design of cancer nanomedicine to accelerate clinical translation. Materials Today Bio. 2022;13:100208.

  8. Seynhaeve A, Amin M, Haemmerich D, Van Rhoon G, Ten Hagen T. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev. 2020;163:125–44.

    PubMed  Article  CAS  Google Scholar 

  9. Soltani M, Souri M, Moradi Kashkooli F. Effects of hypoxia and nanocarrier size on pH-responsive nano-delivery system to solid tumors. Scientific Reports. 2021;11:1–12.

    Article  CAS  Google Scholar 

  10. Kashkooli FM, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. Journal of Controlled Release. 2020;327:316–349.

  11. Tehrani MH, Soltani M, Moradi Kashkooli F, Mahmoudi M. Raahemifar K. Computational Modeling of Combination of Magnetic Hyperthermia and Temperature-Sensitive Liposome for Controlled Drug Release in Solid Tumor. Pharmaceutics. 2022;14:35.

    CAS  Article  Google Scholar 

  12. Kashkooli FM, Rezaeian M, Soltani M. Drug delivery through nanoparticles in solid tumors: A mechanistic understanding. Nanomedicine. 2022. (In Press) https://doi.org/10.2217/nnm-2021-0126.

  13. Price LS, Stern ST, Deal AM, Kabanov AV, Zamboni WC. A reanalysis of nanoparticle tumor delivery using classical pharmacokinetic metrics. Science advances. 2020;6:eaay9249.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Dai Q, Wilhelm S, Ding D, Syed AM, Sindhwani S, Zhang Y, Chen YY, MacMillan P, Chan WC. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano. 2018;12:8423–35.

    CAS  PubMed  Article  Google Scholar 

  15. Manzoor AA, Lindner LH, Landon CD, Park J-Y, Simnick AJ, Dreher MR, Das S, Hanna G, Park W, Chilkoti A. Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors. Can Res. 2012;72:5566–75.

    CAS  Article  Google Scholar 

  16. Ten Hagen TL, Dreher MR, Zalba S, Seynhaeve AL, Amin M, Li L, Haemmerich D. Drug transport kinetics of intravascular triggered drug delivery systems. Communications Biology. 2021;4:1–17.

    Article  CAS  Google Scholar 

  17. Gasselhuber A, Dreher MR, Negussie A, Wood BJ, Rattay F, Haemmerich D. Mathematical spatio-temporal model of drug delivery from low temperature sensitive liposomes during radiofrequency tumour ablation. Int J Hyperth. 2010;26:499–513.

    CAS  Article  Google Scholar 

  18. Swenson CE, Haemmerich D, Maul DH, Knox B, Ehrhart N, Reed RA. Increased duration of heating boosts local drug deposition during radiofrequency ablation in combination with thermally sensitive liposomes (ThermoDox) in a porcine model. PloS one. 2015;10:e0139752.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. Landon CD, Park J-Y, Needham D, Dewhirst MW. Nanoscale drug delivery and hyperthermia: the materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. The open nanomedicine journal. 2011;3:38.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. Kim C, Guo Y, Velalopoulou A, Leisen J, Motamarry A, Ramajayam K, Aryal M, Haemmerich D, Arvanitis CD. Closed-loop trans-skull ultrasound hyperthermia leads to improved drug delivery from thermosensitive drugs and promotes changes in vascular transport dynamics in brain tumors. Theranostics. 2021;11:7276.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Deshazer G, Prakash P, Merck D, Haemmerich D. Experimental measurement of microwave ablation heating pattern and comparison to computer simulations. Int J Hyperth. 2017;33:74–82.

    Article  Google Scholar 

  22. Rossmann C, McCrackin M, Armeson KE, Haemmerich D. Temperature sensitive liposomes combined with thermal ablation: Effects of duration and timing of heating in mathematical models and in vivo. PLoS One. 2017;12:e0179131.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. Bing C, Patel P, Staruch RM, Shaikh S, Nofiele J, WodzakStaruch M, Szczepanski D, Williams NS, Laetsch T, Chopra R. Longer heating duration increases localized doxorubicin deposition and therapeutic index in Vx2 tumors using MR-HIFU mild hyperthermia and thermosensitive liposomal doxorubicin. International Journal of Hyperthermia. 2019;36:195–202.

    CAS  Article  Google Scholar 

  24. Sebeke L, Gómez JDC, Heijman E, Rademann P, Maul AC, Ekdawi S, Vlachakis S, Toker D, Mink BL, Schubert-Quecke S. Hyperthermia-induced doxorubicin delivery from thermosensitive liposomes via MR-HIFU in a pig model. J Controlled Release. 2022;343:798–812.

  25. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36:R167.

    CAS  Article  Google Scholar 

  26. Soltani M, Tehrani MH, Kashkooli FM, Rezaeian M. Effects of magnetic nanoparticle diffusion on microwave ablation treatment: A numerical approach. Journal of Magnetism and Magnetic Materials. 2020;514:167196.

    CAS  Article  Google Scholar 

  27. Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano. 2012;6:3080–91.

    CAS  PubMed  Article  Google Scholar 

  28. Albarqi HA, Wong LH, Schumann C, Sabei FY, Korzun T, Li X, Hansen MN, Dhagat P, Moses AS, Taratula O. Biocompatible nanoclusters with high heating efficiency for systemically delivered magnetic hyperthermia. ACS Nano. 2019;13:6383–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Ray S, Cheng C-A, Chen W, Li Z, Zink JI, Lin Y-Y. Magnetic heating stimulated cargo release with dose control using multifunctional MR and thermosensitive liposome. Nanotheranostics. 2019;3:166.

    PubMed  PubMed Central  Article  Google Scholar 

  30. Huang HS, Hainfeld JF. Intravenous magnetic nanoparticle cancer hyperthermia. Int J Nanomed. 2013;8:2521.

    Google Scholar 

  31. Cole AJ, Yang VC, David AE. Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol. 2011;29:323–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Liu JF, Lan Z, Ferrari C, Stein JM, Higbee-Dempsey E, Yan L, Amirshaghaghi A, Cheng Z, Issadore D, Tsourkas A. Use of oppositely polarized external magnets to improve the accumulation and penetration of magnetic nanocarriers into solid tumors. ACS Nano. 2019;14:142–52.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. Ota S, Takemura Y. Characterization of Néel and Brownian relaxations isolated from complex dynamics influenced by dipole interactions in magnetic nanoparticles. The Journal of Physical Chemistry C. 2019;123:28859–66.

    Article  CAS  Google Scholar 

  34. Torres TE, Lima E, Calatayud MP, Sanz B, Ibarra A, Fernández-Pacheco R, Mayoral A, Marquina C, Ibarra MR, Goya GF. The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia. Sci Rep. 2019;9:1–11.

    Google Scholar 

  35. Ng EYK, Kumar SD. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. Biomed Eng Online. 2017;16:1–22.

    Article  Google Scholar 

  36. Kashkooli FM, Soltani M, Souri M, Meaney C, Kohandel M. Nexus between in silico and in vivo models to enhance clinical translation of nanomedicine. Nano Today. 2021;36:101057.

    Article  CAS  Google Scholar 

  37. Shamsi M, Mohammadi A, Manshadi MK, Sanati-Nezhad A. Mathematical and computational modeling of nano-engineered drug delivery systems. J Control Release. 2019;307:150–65.

    CAS  PubMed  Article  Google Scholar 

  38. Dogra P, Butner JD, Chuang Y-L, Caserta S, Goel S, Brinker CJ, Cristini V, Wang Z. Mathematical modeling in cancer nanomedicine: a review. Biomed Microdevice. 2019;21:1–23.

    Article  Google Scholar 

  39. Kashkooli FM, Soltani M, Momeni MM. Computational modeling of drug delivery to solid tumors: A pilot study based on a real image. Journal of Drug Delivery Science and Technology. 2021;62:102347.

    Article  CAS  Google Scholar 

  40. Kashkooli FM, Soltani M, Hamedi M-H. Drug delivery to solid tumors with heterogeneous microvascular networks: Novel insights from image-based numerical modeling. European Journal of Pharmaceutical Sciences. 2020;151:105399.

    Article  CAS  Google Scholar 

  41. Souri M, Soltani M, MoradiKashkooli F. Computational modeling of thermal combination therapies by magneto-ultrasonic heating to enhance drug delivery to solid tumors. Scientific reports. 2021;11:1–12.

    Article  CAS  Google Scholar 

  42. W. Zhan, X.Y. Xu, A mathematical model for thermosensitive liposomal delivery of doxorubicin to solid tumour. J Drug Deliv. 2013;(2013).

  43. Zhan W, Wang C-H. Convection enhanced delivery of chemotherapeutic drugs into brain tumour. J Control Release. 2018;271:74–87.

    CAS  PubMed  Article  Google Scholar 

  44. Zhan W, Gedroyc W, Xu XY. The effect of tumour size on drug transport and uptake in 3-D tumour models reconstructed from magnetic resonance images. PloS one. 2017;12:e0172276.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. Zhan W, Wang C-H. Convection enhanced delivery of liposome encapsulated doxorubicin for brain tumour therapy. J Control Release. 2018;285:212–29.

    CAS  PubMed  Article  Google Scholar 

  46. Bhandari A, Bansal A, Singh A, Sinha N. Perfusion kinetics in human brain tumor with DCE-MRI derived model and CFD analysis. J Biomech. 2017;59:80–9.

    CAS  PubMed  Article  Google Scholar 

  47. Bhandari A, Bansal A, Singh A, Sinha N. Transport of liposome encapsulated drugs in voxelized computational model of human brain tumors. IEEE Trans Nanobiosci. 2017;16:634–44.

    CAS  Article  Google Scholar 

  48. Moradi Kashkooli F, Soltani M. Evaluation of solid tumor response to sequential treatment cycles via a new computational hybrid approach. Scientific reports. 2021;11:1–15.

    Article  CAS  Google Scholar 

  49. F. Moradi Kashkooli, M. Soltani, M.M. Momeni, A. Rahmim, Enhanced drug delivery to solid tumors via drug-loaded nanocarriers: An image-based computational framework, Front Oncol. 2021;2252.

  50. Huang Y, Gu B, Liu C, Stebbing J, Gedroyc W, Thanou M, Xu XY. Thermosensitive Liposome-Mediated Drug Delivery in Chemotherapy: Mathematical Modelling for Spatio–temporal Drug Distribution and Model-Based Optimisation. Pharmaceutics. 2019;11:637.

    CAS  PubMed Central  Article  Google Scholar 

  51. Liu C, Xu XY. A systematic study of temperature sensitive liposomal delivery of doxorubicin using a mathematical model. Comput Biol Med. 2015;60:107–16.

    CAS  PubMed  Article  Google Scholar 

  52. Gasselhuber A, Dreher MR, Rattay F, Wood BJ, Haemmerich D. Comparison of conventional chemotherapy, stealth liposomes and temperature-sensitive liposomes in a mathematical model. PloS one. 2012;7:e47453.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Kashkooli FM, Soltani M, Rezaeian M, Meaney C, Hamedi M-H, Kohandel M. Effect of vascular normalization on drug delivery to different stages of tumor progression: In-silico analysis. Journal of Drug Delivery Science and Technology. 2020;60:101989.

    Article  CAS  Google Scholar 

  54. Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F, Huang A, Barenholz Y. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Can Res. 1994;54:987–92.

    CAS  Google Scholar 

  55. Hergt R, Dutz S, Müller R, Zeisberger M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys: Condens Matter. 2006;18:S2919.

    CAS  Google Scholar 

  56. Hergt R, Dutz S. Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magn Magn Mater. 2007;311:187–92.

    CAS  Article  Google Scholar 

  57. Mpekris F, Baish JW, Stylianopoulos T, Jain RK. Role of vascular normalization in benefit from metronomic chemotherapy. Proc Natl Acad Sci. 2017;114:1994–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Zhan W, Gedroyc W, Xu XY. Towards a multiphysics modelling framework for thermosensitive liposomal drug delivery to solid tumour combined with focused ultrasound hyperthermia. Biophysics Reports. 2019;5:43–59.

    CAS  Article  Google Scholar 

  59. Andriyanov AV, Koren E, Barenholz Y, Goldberg SN. Therapeutic efficacy of combining pegylated liposomal doxorubicin and radiofrequency (RF) ablation: comparison between slow-drug-releasing, non-thermosensitive and fast-drug-releasing, thermosensitive nano-liposomes. PloS one. 2014;9:e92555.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. Boucher Y, Jain RK. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Can Res. 1992;52:5110–4.

    CAS  Google Scholar 

  61. Raghunathan S, Evans D, Sparks JL. Poroviscoelastic modeling of liver biomechanical response in unconfined compression. Ann Biomed Eng. 2010;38:1789–800.

    PubMed  Article  Google Scholar 

  62. M. Al-Zu’bi, A. Mohan. Modelling of combination therapy using implantable anticancer drug delivery with thermal ablation in solid tumor. Scientific Reports. 2020;10:1–16.

    Article  CAS  Google Scholar 

  63. Zhan W. Mathematical modelling of drug delivery to solid tumour. Doctoral dissertation, Imperial College London. 2014.

  64. Greene RF, Collins JM, Jenkins JF, Speyer JL, Myers CE. Plasma pharmacokinetics of adriamycin and adriamycinol: implications for the design of in vitro experiments and treatment protocols. Can Res. 1983;43:3417–21.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M. Souri and F.M.K; Data curation: M. Souri and F.M.K.; Formal analysis: M. Souri and F.M.K.; Methodology: M. Souri and F.M.K; Simulations: M. Souri; Validation: M. Souri; Writing—original draft: M. Souri; Review and editing: M. Soltani, and F.M.K; Project administration: M. Soltani.

Corresponding author

Correspondence to M. Soltani.

Ethics declarations

Conflict of Interest Statement

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 365 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Souri, M., Moradi Kashkooli, F. & Soltani, M. Analysis of Magneto-Hyperthermia Duration in Nano-sized Drug Delivery System to Solid Tumors Using Intravascular-Triggered Thermosensitive-Liposome. Pharm Res 39, 753–765 (2022). https://doi.org/10.1007/s11095-022-03255-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03255-5

KEY WORDS

  • alternating magnetic field
  • cancer nanomedicine
  • hyperthermia
  • targeted drug delivery
  • thermo-sensitive liposome