Skip to main content

Advertisement

Log in

The Relationship between the Drug Delivery Properties of a Formulation of Teriparatide Microneedles and the Pharmacokinetic Evaluation of Teriparatide Administration in Rats

  • Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Teriparatide is an effective drug for the treatment of osteoporosis. This study examines the relationship between the drug delivery properties of the solid formulation with teriparatide and the pharmacokinetic properties of teriparatide in vivo.

Methods

Teriparatide microneedles with different dissolution rates were prepared using sucrose and carboxymethylcellulose (CMC). There were three aspects of this study: (1) The dissolution rate of teriparatide from both formulations (sucrose and CMC) was measured in vitro. (2) After administration into porcine skin ex vivo, the diffusion rate of FITC-dextran was observed using a confocal microscope. (3) Pharmacokinetic studies were performed in rats and pharmacokinetic data compared with the release rate and the diffusion pattern.

Results

In the in vitro dissolution experiment, 80% of teriparatide was released within 30 min from the CMC MNs, whereas 80% of teriparatide was released within 10 min from the sucrose MNs. After 30 min, the fluorescence intensity on the surface of the MNs was 40% of the initial intensity for sucrose MNs and 90% for CMC MNs. In the pharmacokinetic study, the Cmax values of the CMC and sucrose MNs were 868 pg/mL and 6809 pg/mL, respectively, and the AUClast values were 6771 pg*hr/mL for the CMC MNs and 17,171 pg*hr/mL for the sucrose MNs.

Conclusions

When teriparatide is delivered into the skin using microneedles, the release rate from the solid formulation determines the drug’s pharmacokinetic properties. The diffusion pattern of fluorescence into the skin can be used to anticipate the pharmacokinetic properties of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AUClast :

The area under the plasma concentration–time curve from zero to time last

BA (F):

Bioavailability

CMC:

Carboxymethylcellulose

CMC MNs:

Microneedles using CMC as the main additive in the coating layer

Cmax :

Maximum serum concentration (Cmax)

FITC:

Fluorescein isothiocyanate

Fl-Su:

Sucrose MNs with FITC-dextran

Fl-CMC:

CMC MNs with FITC-dextran

HPLC:

High-performance liquid chromatography

MNs:

Microneedles

PK:

Pharmacokinetics

PTH:

Human recombinant parathyroid hormone

PLA:

Polylactic acid

PDMS:

Poly dimethyl siloxane

PBS:

Phosphate-buffered saline

SC:

Subcutaneous

Sucrose MNs:

Microneedles using sucrose as the main additive in the coating layer

Te-Su:

Sucrose MNs with Teriparatide

Te-CMC:

CMC MNs with teriparatide

Tmax :

Time to maximum plasma concentration

T1/2 :

Terminal half-life

Vd/F:

Apparent volume of distribution

References

  1. Stratford R Jr, Christopher V, Sakon J, Katikaneni R, Gensure R, Ponnapakkam T. Pharmacokinetics in rats of a long-acting human parathyroid hormone–collagen binding domain peptide construct. J Pharm Sci. 2014;103(2):768–75.

    Article  CAS  Google Scholar 

  2. Orwoll E, Scheele W, Paul S, Adami S, Syversen U, Diez-Perez A, Kaufman JM, Clancy A, Gaich G. The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res. 2003;18(1):9–17.

    Article  CAS  Google Scholar 

  3. Cosman F, Lane NE, Bolognese MA, Zanchetta JR, Garcia-Hernandez PA, Sees K, Matriano JA, Gaumer K, Daddona PE. Effect of transdermal teriparatide administration on bone mineral density in postmenopausal women. J Clin Endocrinol Metab. 2010;95(1):151–8.

    Article  CAS  Google Scholar 

  4. Honeywell M, Phillips S, Branch E III, Vo K, Marks E, Thompson M. Teriparatide for osteoporosis: A clinical review. Drug Forecast. 2003;28(11):713–6.

    Google Scholar 

  5. Tsuchie H, Miyakoshi N, Kasukawa Y, Nishi T, Abe H, Segawa T, Shimada Y. The effect of teriparatide to alleviate pain and to prevent vertebral collapse after fresh osteoporotic vertebral fracture. J Bone Miner Metab. 2016;34(1):86–91.

    Article  CAS  Google Scholar 

  6. Nakamura T, Sugimoto T, Nakano T, Kishimoto H, Ito M, Fukunaga M, Hagino H, Sone T, Yoshikawa H, Nishizawa Y. Randomized Teriparatide [human parathyroid hormone (PTH) 1–34] Once-Weekly Efficacy Research (TOWER) trial for examining the reduction in new vertebral fractures in subjects with primary osteoporosis and high fracture risk. J Clin Endocrinol Metab. 2012;97(9):3097–106.

    Article  CAS  Google Scholar 

  7. Escobar-Chávez JJ, Bonilla-Martínez D, Angélica M, Molina-Trinidad E, Casas-Alancaster N, Revilla-Vázquez AL. Microneedles: a valuable physical enhancer to increase transdermal drug delivery. J Clin Pharmacol. 2011;51(7):964–77.

    Article  Google Scholar 

  8. Kang N-W, Kim S, Lee J-Y, Kim K-T, Choi Y, Oh Y, Kim J, Kim D-D, Park J-H. Microneedles for drug delivery: recent advances in materials and geometry for preclinical and clinical studies. Expert Opin Drug Deliv. 2021;18(7):929–47.

    Article  CAS  Google Scholar 

  9. Oh Y-J, Cha H-R, Hwang SJ, Kim D-S, Choi Y-J, Kim Y-S, Shin Y-R, Nguyen TT, Choi S-O, Lee JM, Park J-H. Ovalbumin and cholera toxin delivery to buccal mucus for immunization using microneedles and comparison of immunological response to transmucosal delivery. Drug Deliv Transl Res. 2021;11(4):1–11.

    Article  Google Scholar 

  10. Kim JS, Choi J-A, Kim JC, Park H, Yang E, Park JS, Song M, Park J-H. Microneedles with dual release pattern for improved immunological efficacy of Hepatitis B vaccine. Int J Pharm. 2020;591:119928.

    Article  CAS  Google Scholar 

  11. Nguyen TT, Oh Y, Kim Y, Shin Y, Baek S-K, Park J-H. progress in microneedle array patch (MAP) for vaccine delivery. Hum Vaccines Immunother. 2021;17(1):316–27.

    Article  CAS  Google Scholar 

  12. Naito C, Katsumi H, Suzuki T, Quan Y-S, Kamiyama F, Sakane T, Yamamoto A. Self-dissolving microneedle arrays for transdermal absorption enhancement of human parathyroid hormone (1–34). Pharmaceutics. 2018;10(4):215.

    Article  CAS  Google Scholar 

  13. Daddona PE, Matriano JA, Mandema J, Maa Y-F. Parathyroid hormone (1–34)-coated microneedle patch system: clinical pharmacokinetics and pharmacodynamics for treatment of osteoporosis. Pharm Res. 2011;28(1):159–65.

    Article  CAS  Google Scholar 

  14. Jeong H-R, Jun H, Cha H-R, Lee JM, Park J-H. Safe coated microneedles with reduced puncture occurrence after administration. Micromachines. 2020;11(8):710.

    Article  Google Scholar 

  15. Shim DH, Nguyen TT, Park P-G, Kim MJ, Park B-W, Jeong H-R, Kim D-S, Joo HW, Choi S-O, Park J-H. Development of botulinum toxin A-coated microneedles for treating palmar hyperhidrosis. Mol Pharm. 2019;16(12):4913–9.

    Article  CAS  Google Scholar 

  16. Na Y-G, Kim M, Han M, Huh HW, Kim J-S, Kim JC, Park J-H, Lee H-K, Cho C-W. Characterization of hepatitis B surface antigen loaded polylactic acid-based microneedle and its dermal safety profile. Pharmaceutics. 2020;12(6):531.

    Article  CAS  Google Scholar 

  17. Jeong H-R, Kim J-Y, Kim S-N, Park J-H. Local dermal delivery of cyclosporin A, a hydrophobic and high molecular weight drug, using dissolving microneedles. Eur J Pharm Biopharm. 2018;127:237–43.

    Article  CAS  Google Scholar 

  18. Kochhar JS, Soon WJ, Choi J, Zou S, Kang L. Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin. J Pharm Sci. 2013;102(11):4100–8.

    Article  CAS  Google Scholar 

  19. Martanto W, Moore JS, Couse T, Prausnitz MR. Mechanism of fluid infusion during microneedle insertion and retraction. J Control Release. 2006;112(3):357–61.

    Article  CAS  Google Scholar 

  20. Dash S, Murthy PN, Nata L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217–23.

    CAS  PubMed  Google Scholar 

  21. Miller-Chou BA, Koenig JL. A review of polymer dissolution. Prog Polym Sci. 2003;28:1223–70.

    Article  CAS  Google Scholar 

  22. Ingole RSJ, Gill HS. Microneedle Coating Methods: A Review with a Perspective. J Pharmacol Exp Ther. 2019;370:555–69.

    Article  Google Scholar 

  23. Bonfante G, Lee H, Bao L, Park J, Takama N, Kim B. Comparison of polymers to enhance mechanical properties of microneedles for bio-medical applications. Micro Nano Syst Lett. 2020;8(1):1–13.

    Article  Google Scholar 

  24. Akers MJ. Excipient–drug interactions in parenteral formulations. J Pharm Sci. 2002;91(11):2283–300.

    Article  CAS  Google Scholar 

  25. Ameri M, Daddona PE, Maa YF. Demonstrated Solid-State Stability of Parathyroid Hormone PTH(1–34) Coated on a Novel Transdermal Microprojection Delivery System. Pharm Res. 2009;26(11):2454–63.

    Article  CAS  Google Scholar 

  26. Friend DR. In vitro skin permeation techniques. J Control Release. 1992;18(3):235–48.

    Article  CAS  Google Scholar 

  27. Supe S, Takudage P. Methods for evaluating penetration of drug into the skin: A review. Skin Res Technol. 2021;27(3):299–308.

    Article  Google Scholar 

  28. Ruela ALM, Perissinato AG, Lino MEDS, Mudrik PS, Pereira GR. Evaluation of skin absorption of drugs from topical and transdermal formulations. Braz J Pharm Sci. 2016;52:527–44.

    Article  CAS  Google Scholar 

  29. Zsikó S, Csányi E, Kovács A, Budai-Szűcs M, Gácsi A, Berkó S. Methods to evaluate skin penetration in vitro. Sci Pharm. 2019;87(3):19.

    Article  Google Scholar 

Download references

Funding

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Ministry of Science and ICT (No. NRF- 2018R1A5A2024425), Ministry of Health & Welfare, Republic of Korea (Grant No: HV20C0014) and Korea Ministry of Trade, Industry & Energy (MOTIE, 20014936 (Industrial Strategic Technology Development Program)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dae-Duk Kim or Jung-Hwan Park.

Ethics declarations

Conflict of Interest Statement

PJH is an inventor of patents that have been licensed to companies developing microneedle-based products, is a shareholder of companies developing microneedle-based products.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submitted to Pharmaceutical Research as a research paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1128 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, YJ., Kang, NW., Jeong, HR. et al. The Relationship between the Drug Delivery Properties of a Formulation of Teriparatide Microneedles and the Pharmacokinetic Evaluation of Teriparatide Administration in Rats. Pharm Res 39, 989–999 (2022). https://doi.org/10.1007/s11095-022-03254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03254-6

KEY WORDS

Navigation