Bourne RRA, Adelson J, Flaxman S, Briant P, Bottone M, Vos T, et al. Global prevalence of blindness and distance and near vision impairment in 2020: progress towards the vision 2020 targets and what the future holds. Invest Ophthalmol Vis Sci. 2020;61:2317.
Google Scholar
Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Heal. 2017;5:e1221–34.
Shell JW. Pharmacokinetics of topically applied ophthalmic drugs. Surv Ophthalmol. 1982;26:207–18.
CAS
PubMed
Google Scholar
Lang JC. Ocular drug delivery conventional ocular formulations. Adv Drug Deliv Rev. 1995;16:39–43.
CAS
Google Scholar
Gaudana R, Jwala J, Boddu SHS, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26:1197–216.
CAS
PubMed
Google Scholar
Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348–60. https://doi.org/10.1208/s12248-010-9183-3.
CAS
Article
PubMed
PubMed Central
Google Scholar
Urtti A. Ocular drug delivery. Adv Drug Deliv Rev. 2006;58:1129–30.
CAS
Google Scholar
Mishima S, Gasset A, Klyce SD Jr, Baum JL. Determination of Tear Volume and Tear Flow. Invest Ophthalmol Vis Sci. 1966;5:264–76.
CAS
Google Scholar
Chrai SS, Makoid MC, Eriksen SP, Robinson JR. Drop size and initial dosing frequency problems of topically applied ophthalmic drugs. J Pharm Sci. 1974;63:333–8.
CAS
PubMed
Google Scholar
Chrai SS, Patton TF, Mehta A, Robinson JR. Lacrimal and instilled fluid dynamics in rabbit eyes. J Pharm Sci. 1973;62:1112–21.
CAS
PubMed
Google Scholar
Prausnitz MR. Permeability of cornea, sciera, and conjunctiva: A literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87:1479–88.
CAS
PubMed
Google Scholar
Yokoi N, Komuro A. Non-invasive methods of assessing the tear film. Exp Eye Res. 2004;78:399–407.
CAS
PubMed
Google Scholar
Zhu H, Chauhan A. A mathematical model for ocular tear and solute balance. Curr Eye Res. 2005;30:841–54.
PubMed
Google Scholar
Ranta VP, Mannermaa E, Lummepuro K, Subrizi A, Laukkanen A, Antopolsky M, et al. Barrier analysis of periocular drug delivery to the posterior segment. J Control Release. 2010;148:42–8 (Elsevier B.V.).
CAS
PubMed
Google Scholar
Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG. Drug delivery to the posterior segment of the eye. Drug Discov Today [Internet]. 2011;16:270–7. https://doi.org/10.1016/j.drudis.2010.12.004 (Elsevier Ltd).
CAS
Article
Google Scholar
Yadav D, Varma LT, Yadav K. Drug Delivery to posterior segment of the eye: conventional delivery strategies, their barriers, and restrictions. In: Patel J, Sutariya V, Kanwar J, Pathak Y, editors. Drug delivery for the retina and posterior segment disease. Cham: Springer; 2018. https://doi.org/10.1007/978-3-319-95807-1_3.
Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, Conde-Penedo A, García-Otero X, Luzardo-álvarez A, et al. Drug delivery to the posterior segment of the eye: Biopharmaceutic and pharmacokinetic considerations. Pharmaceutics. 2020;12:1–39.
Google Scholar
Smith SJ, Smith BD, Mohney BG. Ocular side effects following intravitreal injection therapy for retinoblastoma: A systematic review. Br J Ophthalmol. 2014;98:292–7.
PubMed
Google Scholar
Siggers JH, Ethier CR. Fluid mechanics of the eye. Annu Rev Fluid Mech. 2011;44:347–72.
Google Scholar
Mircioiu C, Voicu V, Anuta V, Tudose A, Celia C, Paolino D, et al. Mathematical modeling of release kinetics from supramolecular drug delivery systems. Pharmaceutics. 2019;11:1–45.
Google Scholar
Tojo K. A pharmacokinetic model for ocular drug delivery. Chem Pharm Bull (Tokyo) Japan. 2004;52:1290–4.
CAS
Google Scholar
Kim SH, Lutz RJ, Wang NS, Robinson MR. Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res. 2007;39(5):244–54. https://doi.org/10.1159/000108117.
CAS
Article
PubMed
Google Scholar
Agrahari V, Mandal A, Agrahari V, Trinh HM, Joseph M, Ray A, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6:735–54.
CAS
PubMed
PubMed Central
Google Scholar
Shell JW. Ocular drug delivery systems - a review. Cutan Ocul Toxicol. 1982;1:49–63.
CAS
Google Scholar
Le Bourlais C, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems - Recent advances. Prog Retin Eye Res. 1998;17:33–58.
CAS
PubMed
Google Scholar
Sultana Y, Jain R, Aqil M, Ali A. Review of Ocular Drug Delivery. Curr Drug Deliv. 2006;3:207–17.
CAS
PubMed
Google Scholar
Thassu D, Chader GJ, editors. Ocular drug delivery systems: barriers and application of nanoparticulate systems. 1st edn. CRC Press; 2012. https://doi.org/10.1201/b12950.
Jaswal P, Sharma RB, Agarwal S. Recent trends in ocular drug delivery system. Int J Pharm Sci Rev Res. 2016;38:119–24.
CAS
Google Scholar
Lee VHL, Robinson JR. Topical Ocular Drug Delivery: Recent Developments and Future Challenges. J Ocul Pharmacol. 1986;2:67–108.
CAS
PubMed
Google Scholar
Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: Impacts of membranes and barriers. Expert Opin Drug Deliv. 2008;5:567–81.
CAS
PubMed
Google Scholar
Kompella UB, Kadam RS, Lee VHL. Recent advances in ophthalmic drug delivery. Ther Deliv. 2010;1:435–56.
CAS
PubMed
Google Scholar
Molokhia SA, Thomas SC, Garff KJ, Mandell KJ, Wirostko BM. Anterior eye segment drug delivery systems: Current treatments and future challenges. J Ocul Pharmacol Ther. 2013;29:92–105.
CAS
PubMed
Google Scholar
Maulvi FA, Soni TG, Shah DO. A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv. 2016;23:3017–26.
CAS
PubMed
Google Scholar
Rodríguez Villanueva J, Navarro MG, Rodríguez Villanueva L. Dendrimers as a promising tool in ocular therapeutics: Latest advances and perspectives. Int J Pharm [Internet]. 2016;511:359–66. https://doi.org/10.1016/j.ijpharm.2016.07.031 (Elsevier B.V.).
CAS
Article
Google Scholar
Bertens CJF, Gijs M, van den Biggelaar FJHM, Nuijts RMMA. Topical drug delivery devices: A review. Exp Eye Res. 2018;168:149–60.
CAS
PubMed
Google Scholar
Peng CC, Burke MT, Carbia BE, Plummer C, Chauhan A. Extended drug delivery by contact lenses for glaucoma therapy. J Control Release [Internet]. 2012;162:152–8. https://doi.org/10.1016/j.jconrel.2012.06.017 (Elsevier B.V.).
CAS
Article
Google Scholar
Amrite AC, Edelhauser HF, Kompella UB. Modeling of corneal and retinal pharmacokinetics after periocular drug administration. Investig Ophthalmol Vis Sci. 2008;49:320–32.
Google Scholar
Geroski DH, Edelhauser HF. Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev. 2001;52:37–48.
CAS
PubMed
Google Scholar
Tojo K, Isowaki A. Pharmacokinetic model for in vivo/in vitro correlation of intravitreal drug delivery. Adv Drug Deliv Rev. 2001;52:17–24.
CAS
PubMed
Google Scholar
Hughes PM, Olejnik O, Chang-Lin JE, Wilson CG. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev. 2005;57:2010–32.
CAS
PubMed
Google Scholar
Ranta VP, Urtti A. Transscleral drug delivery to the posterior eye: Prospects of pharmacokinetic modeling. Adv Drug Deliv Rev. 2006;58:1164–81.
CAS
PubMed
Google Scholar
Barocas VH, Balachandran RK. Sustained transscleral drug delivery. Expert Opin Drug Deliv. 2008;5:1–10.
CAS
PubMed
Google Scholar
Missel PJ. Computer modeling for ocular drug delivery. In: Ocular Drug Delivery Systems: Barriers and Application of Nanoparticulate Systems. CRC Press; 2012. p. 59–92.
Paola C, Francesca M. Mathematical and Numerical Methods for Modeling Drug Delivery to the Posterior Segment of the Eye. J Ophthalmic Res Ocul Care. 2017;1:4–11.
Google Scholar
Ethier CR, Johnson M, Ruberti J. Ocular Biomechanics and Biotransport. Annu Rev Biomed Eng. 2004;6:249–73.
CAS
PubMed
Google Scholar
Alm A, Nilsson SFE. Uveoscleral outflow - A review. Exp Eye Res [Internet]. 2009;88:760–8. https://doi.org/10.1016/j.exer.2008.12.012 (Elsevier Ltd).
CAS
Article
Google Scholar
Siggers JH, Ethier CR. Fluid Mechanics of the Eye. Annu Rev Fluid Mech. 2012;44:347–72.
Google Scholar
Goel M, Picciani RG, Lee RK, Bhattacharya SK. Aqueous humor dynamics: a review. Open Ophthalmol J. 2010;4:52–9. https://doi.org/10.2174/1874364101004010052.
CAS
Article
PubMed
PubMed Central
Google Scholar
Goldmann VH. Minute volume of the aqueous in the anterior chamber of the human eye in normal state and in primary glaucoma. Ophthalmologica. 1950;120:19–21.
CAS
PubMed
Google Scholar
van Zyl T, Yan W, McAdams A, Peng YR, Shekhar K, Regev A, et al. Cell atlas of aqueous humor outflow pathways in eyes of humans and four model species provides insight into glaucoma pathogenesis. Proc Natl Acad Sci U S A. 2020;117:10339–49.
PubMed
PubMed Central
Google Scholar
Lyubimov GA, Moiseeva IN, Stein AA. Dynamics of the intraocular fluid: Mathematical model and its main consequences. Fluid Dyn. 2007;42:684–94.
Google Scholar
Kiel JW, Hollingsworth M, Rao R, Chen M, Reitsamer HA. Ciliary blood flow and aqueous humor production. Prog Retin Eye Res [Internet]. 2011;30:1–17. https://doi.org/10.1016/j.preteyeres.2010.08.001 (Elsevier Ltd).
CAS
Article
Google Scholar
Dobler B, Bendl R. Precise modelling of the eye for proton therapy of intra-ocular tumours. Phys Med Biol. 2002;47:593–613.
PubMed
Google Scholar
Heys JJ, Barocas VH, Taravella MJ. Modeling passive mechanical interaction between aqueous humor and iris. J Biomech Eng. 2001;123(6):540–7. https://doi.org/10.1115/1.1411972.
CAS
Article
PubMed
Google Scholar
Heys JJ, Barocas VH. Computational evaluation of the role of accommodation in pigmentary glaucoma. Investig Ophthalmol Vis Sci. 2002;43:700–8.
Google Scholar
Huang EC, Barocas VH. Active iris mechanics and pupillary block: Steady-state analysis and comparison with anatomical risk factors. Ann Biomed Eng. 2004;32:1276–85.
PubMed
Google Scholar
Huang EC, Barocas VH. Accommodative microfluctuations and iris contour. J Vis. 2006;6:653–60.
PubMed
Google Scholar
Amini R, Barocas VH. Reverse pupillary block slows iris contour recovery from corneoscleral indentation. J Biomech Eng. 2010;132:1–6.
Google Scholar
Dvoriashyna M, Repetto R, Romano MR, Tweedy JH. Aqueous humour flow in the posterior chamber of the eye and its modifications due to pupillary block and iridotomy. Math Med Biol. 2018;35:447–67.
CAS
PubMed
Google Scholar
Wang W, Qian X, Song H, Zhang M, Liu Z. Fluid and structure coupling analysis of the interaction between aqueous humor and iris. Biomed Eng Online BioMed Central. 2016;15:569–86.
Google Scholar
Johnson MC, Kamm RD. The role of Schlemm’s canal in aqueous outflow from the human eye. Invest Ophthalmol Vis Sci. 1983;24:320–5.
CAS
PubMed
Google Scholar
Johnson M, Shapiro A, Ethier CR, Kamm RD. Modulation of outflow resistance by the pores of the inner wall endothelium. Investig Ophthalmol Vis Sci. 1992;33:1670–5.
CAS
Google Scholar
Avtar R, Srivastava R. Aqueous outflow in schlemm’s canal. Appl Math Comput. 2006;174:316–28.
Google Scholar
Avtar R, Srivastava R. Modelling aqueous humor outflow through trabecular meshwork. Appl Math Comput. 2007;189:734–45.
Google Scholar
Tandon PN, Autar R. Biphasic model of the trabecular meshwork in the eye. Med Biol Eng Comput. 1991;29:281–90.
CAS
PubMed
Google Scholar
Crowder TR, Ervin VJ. Numerical simulations of fluid pressure in the human eye. Appl Math Comput [Internet]. 2013;219:11119–33. https://doi.org/10.1016/j.amc.2013.04.060 (Elsevier Inc.).
Article
Google Scholar
Merchant BM, Heys JJ. Effects of variable permeability on aqueous humor outflow. Appl Math Comput. 2008;196:371–80.
Google Scholar
Gong H, Ruberti J, Overby D, Johnson M, Freddo TF. A new view of the human trabecular meshwork using quick-freeze, deep-etch electron microscopy. Exp Eye Res. 2002;75:347–58.
CAS
PubMed
Google Scholar
Kumar S, Acharya S, Beuerman R, Palkama A. Numerical solution of ocular fluid dynamics in a rabbit eye: Parametric effects. Ann Biomed Eng. 2006;34:530–44.
PubMed
Google Scholar
Brubaker RF. Flow of aqueous humor in humans [The Friedenwald Lecture]. Invest Ophthalmol Vis Sci. 1991;32(13):3145–66.
CAS
PubMed
Google Scholar
Bill A. Uveoscleral drainage of aqueous humor: physiology and pharmacology. Prog Clin Biol Res. 1989;312:417–27.
CAS
PubMed
Google Scholar
Nilsson SFE. The uveoscleral outflow routes. Eye. 1997;11:149–54.
PubMed
Google Scholar
Sit AJ, Nau CB, McLaren JW, Johnson DH, Hodge D. Circadian variation of aqueous dynamics in young healthy adults. Investig Ophthalmol Vis Sci. 2008;49:1473–9.
Google Scholar
Gardiner BS, Smith DW, Coote M, Crowston JG. Computational modeling of fluid flow and intra-ocular pressure following glaucoma surgery. PLoS One. 2010;5(10):e13178. https://doi.org/10.1371/journal.pone.0013178.
Phelps CD, Armaly MF. Measurement of episcleral venous pressure. Am J Ophthalmol. 1978;85(1):35–42. https://doi.org/10.1016/s0002-9394(14)76662-0.
CAS
Article
PubMed
Google Scholar
Liu D, Wood NB, Witt N, Hughes AD, Thom SA, Xu XY. Computational analysis of oxygen transport in the retinal arterial network. Curr Eye Res. 2009;34:945–56.
PubMed
Google Scholar
Bryant MR, Szerenyi K, Schmotzer H, McDonnell PJ. Corneal tensile strength in fully healed radial keratotomy wounds. Invest Ophthalmol Vis Sci. 1994;35:3022–31.
CAS
PubMed
Google Scholar
Hjortdal J. Regional elastic performance of the human cornea. J Biomech. 1996;29:931–42.
CAS
PubMed
Google Scholar
Stitzel JD, Duma SM, Cormier JM, Herring IP. A nonlinear finite element model of the eye with experimental validation for the prediction of globe rupture. SAE Tech Pap. 2002;46:81–102.
Google Scholar
Heys J, Barocas VH. Mechanical characterization of the bovine iris. J Biomech. 1999;32:999–1003.
CAS
PubMed
Google Scholar
Villamarin A, Roy S, Hasballa R, Vardoulis O, Reymond P, Stergiopulos N. 3D simulation of the aqueous flow in the human eye. Med Eng Phys [Internet]. 2012;34:1462–70. https://doi.org/10.1016/j.medengphy.2012.02.007 (Institute of Physics and Engineering in Medicine).
Article
Google Scholar
Stay MS, Pan T, Brown JD, Ziaie B, Barocas VH. Thin-film coupled fluid-solid analysis of flow through the AhmedTM glaucoma drainage device. J Biomech Eng. 2005;127:776–81.
PubMed
Google Scholar
Siewert S, Sämann M, Schmidt W, Stiehm M, Falke K, Grabow N, Guthoff R, Schmitz KP. Gekoppelte Analyse der Fluid-Struktur-Interaktion eines mikromechanischen Ventils für Glaukomdrainageimplantate [Coupled Analysis of Fluid-Structure Interaction of a Micro-Mechanical Valve for Glaucoma Drainage Devices]. Klin Monbl Augenheilkd. 2015;232(12):1374–80. https://doi.org/10.1055/s-0041-107940.
CAS
Article
PubMed
Google Scholar
Kudsieh B, Fernández-Vigo JI, Agujetas R, Montanero JM, Ruiz-Moreno JM, Fernández-Vigo JÁ, et al. Numerical model to predict and compare the hypotensive efficacy and safety of minimally invasive glaucoma surgery devices. PLoS One. 2020;15:1–17.
Google Scholar
Martínez Sánchez GJ, Escobar del Pozo C, Rocha Medina JA, Naude J, Brambila Solorzano A. Numerical simulation of the aqueous humor flow in the eye drainage system; a healthy and pathological condition comparison. Med Eng Phys. 2020;83:82–92.
PubMed
Google Scholar
Lagendijk JJ. A mathematical model to calculate temperature distributions in human and rabbit eyes during hyperthermic treatment. Phys Med Biol. 1982;27(11):1301–11. https://doi.org/10.1088/0031-9155/27/11/001.
CAS
Article
PubMed
Google Scholar
Scott JA. A finite element model of heat transport in the human eye. Phys Med Biol. 1988;33(2):227–41. https://doi.org/10.1088/0031-9155/33/2/003.
CAS
Article
PubMed
Google Scholar
Scott JA. The computation of temperature rises in the human eye induced by infrared radiation. Phys Med Biol. 1988;33:243–57.
CAS
PubMed
Google Scholar
Emery AF, Kramar P, Guy AW, Lin JC. Microwave induced temperature rises in rabbit eyes in cataract research. ASME J Heat Transfer. 1975;97(1):123–8. https://doi.org/10.1115/1.3450259.
Article
Google Scholar
Ciceki U. Computational Model for heat Transfer in the Human Eye Using the Finite Element Method. Louisiani University; 2003.
Neelakantaswamy PS, Ramakrishnan KP. Microwave-induced hazardous nonlinear thermoelastic vibrations of the ocular lens in the human eye. J Biomech. 1979;12:205–10.
CAS
PubMed
Google Scholar
Karampatzakis A, Samaras T. Numerical model of heat transfer in the human eye with consideration of fluid dynamics of the aqueous humour. Phys Med Biol. 2010;55:5653–65.
PubMed
Google Scholar
Chen H, Zhang F, Huang Y, Wu J. Numerical investigation of topical drug transport in the anterior human eye. Int J Heat Mass Transf [Internet]. 2015;7:237–43. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.142 (Elsevier Ltd).
Article
Google Scholar
Heys JJ, Barocas VH. A Boussinesq model of natural convection in the human eye and the formation of Krukenberg’s spindle. Ann Biomed Eng. 2002;30:392–401.
PubMed
Google Scholar
Canning CR, Greaney MJ, Dewynne JN, Fitt AD. Fluid flow in the anterior chamber of a human eye. IMA J Math Appl Med Biol. 2002;19:31–60.
CAS
PubMed
Google Scholar
Fitt AD, Gonzalez G. Fluid mechanics of the human eye: Aqueous humour flow in the anterior chamber. Bull Math Biol. 2006;68:53–71.
CAS
PubMed
Google Scholar
Ooi EH, Ng EYK. Simulation of aqueous humor hydrodynamics in human eye heat transfer. Comput Biol Med. 2008;38:252–62.
PubMed
Google Scholar
Ooi EH, Ng EYK. Effects of natural convection within the anterior chamber on the ocular heat transfer. Int J Numer Meth Biomed Engng. 2011;27:408–23. https://doi.org/10.1002/cnm.1411.
Article
Google Scholar
Ng EYK, Ooi EH. FEM simulation of the eye structure with bioheat analysis. Comput Methods Programs Biomed. 2006;82:268–76.
CAS
PubMed
Google Scholar
Ooi EH, Ng EYK, Purslow C, Acharya R. Variations in the corneal surface temperature with contact lens wear. Proc Inst Mech Eng Part H J Eng Med. 2007;221:337–49.
CAS
Google Scholar
Ng EYK, Ooi EH. Ocular surface temperature: A 3D FEM prediction using bioheat equation. Comput Biol Med. 2007;37:829–35.
CAS
PubMed
Google Scholar
Tiang KL, Ooi EH. Effects of aqueous humor hydrodynamics on human eye heat transfer under external heat sources. Med Eng Phys Phys. 2016;38:776–84 (Elsevier Ltd).
Google Scholar
Amara EH. Numerical investigations on thermal effects of laser-ocular media interaction. Int J Heat Mass Transf. 1995;38:2479–88.
Google Scholar
Chua KJ, Ho JC, Chou SK, Islam MR. On the study of the temperature distribution within a human eye subjected to a laser source. Int Commun Heat Mass Transf. 2005;32:1057–65.
Google Scholar
Narasimhan A, Jha KK, Gopal L. Transient simulations of heat transfer in human eye undergoing laser surgery. Int J Heat Mass Transf [Internet]. 2010;53:482–90. https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.007 (Elsevier Ltd).
Article
Google Scholar
Jha KK, Narasimhan A. Three-dimensional bio-heat transfer simulation of sequential and simultaneous retinal laser irradiation. Int J Therm Sci [Internet]. 2011;50:1191–8. https://doi.org/10.1016/j.ijthermalsci.2011.02.005 (Elsevier Masson SAS).
Article
Google Scholar
Narasimhan A, Sadasivam S. Non-Fourier bio heat transfer modelling of thermal damage during retinal laser irradiation. Int J Heat Mass Transf [Internet]. 2013;60:591–7. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.010.
Article
Google Scholar
Chen B, Zhao Y, Li D. Numerical simulation of ophthalmic laser surgeries by a local thermal non-equilibrium two-temperature model. Int J Numer Methods Heat Fluid Flow. 2019;29:4706–23.
Google Scholar
Shafahi M, Vafai K. Human eye response to thermal disturbances. ASME J Heat Transfer. 2011;133(1):011009. https://doi.org/10.1115/1.4002360.
Wessapan T, Rattanadecho P, Wongchadakul P. Effect of the body position on natural convection within the anterior chamber of the human eye during exposure to electromagnetic fields. Numer Heat Transf Part A Appl. 2016;69:1014–28.
Google Scholar
Wessapan T, Rattanadecho P. Influence of ambient temperature on heat transfer in the human eye during exposure to electromagnetic fields at 900 MHz. Int J Heat Mass Transf [Internet]. 2014;70:378–88. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.009 (Elsevier Ltd).
Article
Google Scholar
Wessapan T, Rattanadecho P. Aqueous humor natural convection of the human eye induced by electromagnetic fields: in the supine position. J Med Bioeng. 2014;3:241–58.
Google Scholar
Wessapan T, Rattanadecho P. Specific absorption rate and temperature increase in human eye subjected to electromagnetic fields at 900 MHz. J Heat Transfer [Internet]. 2012;134:091101. https://doi.org/10.1115/1.4006243.
Article
Google Scholar
Mauro A, Massarotti N, Salahudeen M, Romano MR, Romano V, Nithiarasu P. A generalised porous medium approach to study thermo-fluid dynamics in human eyes. Med Biol Eng Comput. 2018;56:1823–39.
PubMed
Google Scholar
Huang D, Chen Y-S, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev [Internet]. 2018;126:96–112. https://doi.org/10.1016/j.addr.2017.09.008 Elsevier B.V.
CAS
Article
Google Scholar
Hämäläinen KM, Kananen K, Auriola S, Kontturi K, Urtti A. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Investig Ophthalmol Vis Sci. 1997;38:627–34.
Google Scholar
Freddo TF. Shifting the paradigm of the blood-aqueous barrier. Exp Eye Res. 2001;73:581–92.
CAS
PubMed
Google Scholar
Keister JC, Heidmann PS, Missel PJ. Transient analysis of ocular drug delivery: Zero-volume effect. J Pharm Sci. 1997;86:1040–5.
CAS
PubMed
Google Scholar
Zhang W, Prausnitz MR, Edwards A. Model of transient drug diffusion across cornea. J Control Release. 2004;99:241–58.
CAS
PubMed
Google Scholar
Deng F, Ranta VP, Kidron H, Urtti A. General Pharmacokinetic Model for Topically Administered Ocular Drug Dosage Forms. Pharm Res [Internet]. 2016;33:2680–90. https://doi.org/10.1007/s11095-016-1993-2.
CAS
Article
Google Scholar
Wyatt HJ. Modelling transport in the anterior segment of the eye [erratum appears in Optom Vis Sci. 2004, 81(6):478]. Optom Vis Sci. 2004;81:272–82.
PubMed
Google Scholar
Wyatt HJ. Ocular pharmacokinetics and convectional flow: Evidence from spatio- temporal analysis of mydriasis. J Ocul Pharmacol Ther. 1996;12:441–59.
CAS
PubMed
Google Scholar
Wyatt HJ, Lustgarten M. Probing anterior segment kinetics with focally applied mydriatics. J Ocul Pharmacol Ther. 2001;17(5):461–73. https://doi.org/10.1089/108076801753266848.
CAS
Article
PubMed
Google Scholar
Lin CW, Yuan F. Numerical simulations of ethacrynic acid transport from precorneal region to trabecular meshwork. Ann Biomed Eng. 2010;38:935–44.
PubMed
Google Scholar
Naghipoor J, Jafary N, Rabczuk T. Mathematical and computational modeling of drug release from an ocular iontophoretic drug delivery device. Int J Heat Mass Transf [Internet]. 2018;123:1035–49. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.021 (Elsevier Ltd).
Article
Google Scholar
Loke CY, Ooi EH, Salahudeen MS, Ramli N. Segmental aqueous humour outflow and eye orientation have strong influence on ocular drug delivery. Appl Math Model [Internet]. 2018;57:474–91. https://doi.org/10.1016/j.apm.2018.01.007 (Elsevier Inc.).
Article
Google Scholar
Bhandari A, Bansal A, Sinha N. Effect of aging on heat transfer, fluid flow and drug transport in anterior human eye: A computational study. J Control Release [Internet]. 2020;328:286–303. https://doi.org/10.1016/j.jconrel.2020.08.044 (Elsevier).
CAS
Article
Google Scholar
Lamminsalo M, Taskinen E, Karvinen T, Subrizi A, Murtomäki L, Urtti A, Ranta VP. Extended pharmacokinetic model of the rabbit eye for intravitreal and intracameral injections of macromolecules: quantitative analysis of anterior and posterior elimination pathways. Pharm Res. 2018;35(8):153. https://doi.org/10.1007/s11095-018-2435-0.
CAS
Article
PubMed
Google Scholar
Pimenta AFR, Valente A, Pereira JMC, Pereira JCF, Filipe HP, Mata JLG, et al. Simulation of the hydrodynamic conditions of the eye to better reproduce the drug release from hydrogel contact lenses: experiments and modeling. Drug Deliv Transl Res [Internet]. 2016;6:755–62. https://doi.org/10.1007/s13346-016-0303-1.
CAS
Article
Google Scholar
Ferreira JA, De Oliveira P, Da Silva PM, Murta JN, Oliveira PDE, Murta JN. Numerical simulation of aqueous humor flow: from healthy to pathological situations. Appl Math Comput [Internet]. 2014;226:777–92. https://doi.org/10.1016/j.amc.2013.10.070.
Article
Google Scholar
Bhandari A, Bansal A, Sinha N. Numerical modeling of therapeutic lens drug delivery in the anterior human eye for the treatment of primary open-angle glaucoma. Proc Inst Mech Eng H. 2020;234(9):942–54. https://doi.org/10.1177/0954411920934960.
Article
PubMed
Google Scholar
Li CC, Chauhan A. Modeling ophthalmic drug delivery by soaked contact lenses. Ind Eng Chem Res. 2006;45:3718–34.
CAS
Google Scholar
Le Goff MM, Bishop PN. Adult vitreous structure and postnatal changes. Eye. 2008;22:1214–22.
PubMed
Google Scholar
Repetto R, Ghigo I, Seminara G, Ciurlo C. A simple hydro-elastic model of the dynamics of a vitreous membrane. J Fluid Mech. 2004;503:1–14. https://doi.org/10.1017/S0022112003007389.
Article
Google Scholar
Modarreszadeh A, Abouali O. Numerical simulation for unsteady motions of the human vitreous humor as a viscoelastic substance in linear and non-linear regimes. J Nonnewton Fluid Mech [Internet]. 2014;204:22–31. https://doi.org/10.1016/j.jnnfm.2013.12.001 (Elsevier B.V.).
CAS
Article
Google Scholar
Tojo KJ, Ohtori A. Pharmacokinetic model of intravitreal drug injection. Math Biosci. 1994;123:59–75.
CAS
PubMed
Google Scholar
Friedrich S, Cheng YL, Saville B. Finite element modeling of drug distribution in the vitreous humor of the rabbit eye. Ann Biomed Eng. 1997;25:303–14.
CAS
PubMed
Google Scholar
Friedrich S, Saville B, Cheng YL. Drug distribution in the vitreous humor of the human eye: The effects of aphakia and changes in retinal permeability and vitreous diffusivity. J Ocul Pharmacol Ther. 1997;13:445–59.
CAS
PubMed
Google Scholar
Tojo K, Nakagawa K, Morita Y, Ohtori A. A pharmacokinetic model of intravitreal delivery of ganciclovir. Eur J Pharm Biopharm. 1999;47:99–104.
CAS
PubMed
Google Scholar
Stay MS, Xu J, Randolph TW, Barocas VH. Computer simulation of convective and diffusive transport of controlled-release drugs in the vitreous humor. Pharm Res. 2003;20:96–102.
CAS
PubMed
Google Scholar
Xu J, Heys JJ, Barocas VH, Randolph TW. Permeability and diffusion in vitreous humor: Implications for drug delivery. Pharm Res. 2000;17:664–9.
CAS
PubMed
Google Scholar
Missel PJ. Hydraulic flow and vascular clearance influences on intravitreal drug delivery. Pharm Res United States. 2002;19:1636–47.
CAS
Google Scholar
Missel PJ. Hydraulic flow and vascular clearance influences on intravitreal drug delivery. Pharm Res. 2002;19:1636–47.
CAS
PubMed
Google Scholar
Missel PJ. Simulating intravitreal injections in anatomically accurate models for rabbit, monkey, and human eyes. Pharm Res. 2012;29:3251–72.
CAS
PubMed
PubMed Central
Google Scholar
Park J, Bungay PM, Lutz RJ, Augsburger JJ, Millard RW, Roy AS, et al. Evaluation of coupled convective-diffusive transport of drugs administered by intravitreal injection and controlled release implant. J Control Release. 2005;105:279–95.
CAS
PubMed
Google Scholar
Kim H, Lizak MJ, Tansey G, Csaky KG, Robinson MR, Yuan P, et al. Study of ocular transport of drugs released from an intravitreal implant using magnetic resonance imaging. Ann Biomed Eng. 2005;33:150–64.
PubMed
Google Scholar
Kathawate J, Acharya S. Computational modeling of intravitreal drug delivery in the vitreous chamber with different vitreous substitutes. Int J Heat Mass Transf [Internet]. 2008;51:5598–609. https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.053 (Elsevier Ltd).
Article
Google Scholar
Lee TWY, Robinson JR. Drug delivery to the posterior segment of the eye III: The effect of parallel elimination pathway on the vitreous drug level after subconjunctival injection. J Ocul Pharmacol Ther. 2004;20:55–64.
CAS
PubMed
Google Scholar
Wai-Yip Lee T, Robinson JR. Drug delivery to the posterior segment of the eye IV: Theoretical formulation of a drug delivery system for subconjunctival injection. J Ocul Pharmacol Ther. 2009;25:29–37.
Google Scholar
Robinson MR, Lee SS, Kim H, Kim S, Lutz RJ, Galban C, et al. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res. 2006;82:479–87.
CAS
PubMed
Google Scholar
Zhang F, Chen H, Huang Y. Computer modeling of drug delivery in the anterior human eye after subconjunctival and episcleral implantation. Comput Biol Med [Internet]. 2017;89:162–9. https://doi.org/10.1016/j.compbiomed.2017.07.016 (Elsevier Ltd).
CAS
Article
Google Scholar
Balachandran RK, Barocas VH. Computer modeling of drug delivery to the posterior eye: Effect of active transport and loss to choroidal blood flow. Pharm Res. 2008;25:2685–96.
CAS
PubMed
Google Scholar
Kotha S, Murtomäki L. Virtual pharmacokinetic model of human eye. Math Biosci [Internet]. 2014;253:11–8. https://doi.org/10.1016/j.mbs.2014.03.014 (Elsevier Inc).
CAS
Article
Google Scholar
Mac Gabhann F, Demetriades AM, Deering T, Packer JD, Shah SM, Duh E, et al. Protein transport to choroid and retina following periocular injection: Theoretical and experimental study. Ann Biomed Eng. 2007;35:615–30.
PubMed
Google Scholar
del Amo EM, Rimpelä AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res [Internet]. 2017;57:134–85. https://doi.org/10.1016/j.preteyeres.2016.12.001 (Elsevier Ltd).
CAS
Article
Google Scholar
Causin P, Malgaroli F. Mathematical assessment of drug build-up in the posterior eye following transscleral delivery. J Math Ind [Internet]. Causin and Malgaroli; 2016;6. https://doi.org/10.1186/s13362-016-0031-7.
Narasimhan A, Vishnampet R. Effect of choroidal blood flow on transscleral retinal drug delivery using a porous medium model. Int J Heat Mass Transf [Internet]. 2012;55:5665–72. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.060 (Elsevier Ltd).
Article
Google Scholar
Jooybar E, Abdekhodaie MJ, Farhadi F, Cheng YL. Computational modeling of drug distribution in the posterior segment of the eye: Effects of device variables and positions. Math Biosci [Internet]. 2014;255:11–20. https://doi.org/10.1016/j.mbs.2014.06.008 (Elsevier Inc).
CAS
Article
Google Scholar
Kavousanakis ME, Kalogeropoulos NG, Hatziavramidis DT. Computational modeling of drug delivery to the posterior eye. Chem Eng Sci [Internet]. 2014;108:203–12. https://doi.org/10.1016/j.ces.2014.01.005 (Elsevier).
CAS
Article
Google Scholar
Zhang Y, Bazzazi H, E Silva RL, Pandey NB, Green JJ, Campochiaro PA, et al. Three-dimensional transport model for intravitreal and suprachoroidal drug injection. Investig Ophthalmol Vis Sci. 2018;59:5266–76.
CAS
Google Scholar
Abootorabi S, Tripathi A, Yu HW, Dávila LP. Computational modeling of intraocular drug delivery supplied by porous implants. Drug Deliv Transl Res. 2021;11:2134–43.
CAS
PubMed
Google Scholar
Penkova A, Zhang S, Humayun M, Fraser S, Moats R, Sadhal S. Measurement of the hydraulic conductivity of the vitreous humor. J Porous Media. 2020;23:195–206.
PubMed
PubMed Central
Google Scholar
Tsuboi S. Measurement of the volume flow and hydraulic conductivity across the isolated dog retinal pigment epithelium. Investig Ophthalmol Vis Sci. 1987;28:1776–82.
CAS
Google Scholar
Fatt I, Hedbys BO. Flow of water in the sclera. Exp Eye Res. 1970;10:243–9.
CAS
PubMed
Google Scholar
Engler CB, Sander B, Larsen M, Dalgaard P, Lund-Andersen H. Fluorescein transport across the human blood-retina barrier in the direction vitreous to blood: Quantitative assessment in vivo. Acta Ophthalmol. 1994;72:655–62.
CAS
Google Scholar
Palestine AG, Brubaker RF. Pharmacokinetics of fluorescein in the vitreous. Investig Ophthalmol Vis Sci. 1981;21:542–9.
CAS
Google Scholar
Roos MW. Theoretical estimation of retinal oxygenation during retinal artery occlusion. Physiol Meas. 2004;25:1523–32.
PubMed
Google Scholar
Avtar R, Tandon D. Modelling the transmural transport of oxygen to the retina. Appl Math Comput. 2007;186:540–7.
Google Scholar
Avtar R, Tandon D. Mathematical modelling of intraretinal oxygen partial pressure. Trop J Pharm Res. 2008;7:1107.
Google Scholar
Cassani S. Blood circulation and aqueous humor flow in the eye: multi-scale modeling and clinical application. Purdue; 2016.
Causin P, Guidoboni G, Malgaroli F, Sacco R, Harris A. Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation. Biomech Model Mechanobiol. 2016;15:525–42 (Springer Berlin Heidelberg).
PubMed
Google Scholar
Dissertation A. Computational Modeling of Drug Transport in the Posterior Eye. 2010.
He Z, Nguyen CT, Armitage JA, Vingrys AJ, Bui BV. Blood pressure modifies retinal susceptibility to intraocular pressure elevation. PLoS One. 2012;7(2):e31104. https://doi.org/10.1371/journal.pone.0031104.
Guidoboni G, Harris A, Cassani S, Arciero J, Siesky B, Amireskandari A, et al. Intraocular pressure, blood pressure, and retinal blood flow autoregulation: A mathematical model to clarify their relationship and clinical relevance. Investig Ophthalmol Vis Sci. 2014;55:4105–18.
Google Scholar
Carlson BE, Arciero JC, Secomb TW. Theoretical model of blood flow autoregulation: Roles of myogenic, shear-dependent, and metabolic responses. Am J Physiol Hear Circ Phyiol. 2008;295:1572–9.
Google Scholar
Arciero J, Harris A, Siesky B, Amireskandari A, Gershuny V, Pickrell A, et al. Theoretical analysis of vascular regulatory mechanisms contributing to retinal blood flow autoregulation. Investig Ophthalmol Vis Sci. 2013;54:5584–93.
Google Scholar
Takahashi T, Nagaoka T, Yanagida H, Saitoh T, Kamiya A, Hein T, et al. A mathematical model for the distribution of hemodynamic parameters in the human retinal microvascular network. J Biorheol. 2009;23:77–86.
Google Scholar
Liu D, Wood NB, Witt N, Hughes AD, Thom SA, Xu XY. Assessment of energy requirement for the retinal arterial network in normal and hypertensive subjects. J Biomech Eng. 2012;134:1–7.
Google Scholar
Ganesan P, He S, Xu H. Development of an image-based network model of retinal vasculature. Ann Biomed Eng. 2010;38:1566–85.
CAS
PubMed
Google Scholar
Ganesan P, He S, Xu H. Analysis of retinal circulation using an image-based network model of retinal vasculature. Microvasc Res [Internet]. 2010;80:99–109. https://doi.org/10.1016/j.mvr.2010.02.005 (Elsevier Inc).
CAS
Article
Google Scholar
Ganesan P, He S, Xu H. Development of an image-based model for capillary vasculature of retina. Comput Methods Programs Biomed. 2011;102:35–46.
CAS
PubMed
Google Scholar
Malek J, Azar AT, Nasralli B, Tekari M, Kamoun H, Tourki R. Computational analysis of blood flow in the retinal arteries and veins using fundus image. Comput Math with Appl [Internet]. 2015;69:101–16. https://doi.org/10.1016/j.camwa.2014.11.017 (Elsevier Ltd).
Article
Google Scholar
Malek J, Azar AT, Tourki R. Impact of retinal vascular tortuosity on retinal circulation. Neural Comput Appl. 2014;26:25–40.
Google Scholar
Dziubek A, Guidoboni G, Harris A, Hirani AN, Rusjan E, Thistleton W. Effect of ocular shape and vascular geometry on retinal hemodynamics: a computational model. Biomech Model Mechanobiol. 2016;15:893–907 (Springer Berlin Heidelberg).
PubMed
Google Scholar
Rebhan J, Parker LP, Kelsey LJ, Chen FK, Doyle BJ. A computational framework to investigate retinal haemodynamics and tissue stress. Biomech Model Mechanobiol [Internet]. 2019;18:1745–57. https://doi.org/10.1007/s10237-019-01172-y (Springer Berlin Heidelberg).
Article
Google Scholar
Abouali O, Modareszadeh A, Ghaffarieh A, Tu J. Investigation of saccadic eye movement effects on the fluid dynamic in the anterior chamber. J Biomech Eng. 2012;134:1–9.
Google Scholar
Modarreszadeh S, Abouali O, Ghaffarieh A, Ahmadi G. Physiology of aqueous humor dynamic in the anterior chamber due to rapid eye movement. Physiol Behav [Internet]. 2014;135:112–8. https://doi.org/10.1016/j.physbeh.2014.05.017 (Elsevier Inc).
CAS
Article
Google Scholar
Repetto R, Pralits JO, Siggers JH, Soleri P. Phakic iris-fixated intraocular lens placement in the anterior chamber: effects on aqueous flow. Invest Ophthalmol Vis Sci [Internet]. 2015;56:3061–8. https://doi.org/10.1167/iovs.14-16118.
CAS
Article
Google Scholar
Dvoriashyna M, Repetto R, Tweedy JH. Oscillatory and steady streaming flow in the anterior chamber of the moving eye. J Fluid Mech. 2019;863:904–26.
Google Scholar
David T, Smye S, Dabbs T, James T. A model for the fluid motion of vitreous humour of the human eye during saccadic movement. Phys Med Biol. 1998;43:1385–99.
CAS
PubMed
Google Scholar
Repetto R, Stocchino A, Cafferata C. Experimental investigation of vitreous humour motion within a human eye model. Phys Med Biol. 2005;50:4729–43.
PubMed
Google Scholar
Ferroni M, Cereda MG, Boschetti F. A combined approach for the analysis of ocular fluid dynamics in the presence of saccadic movements. Ann Biomed Eng. 2018;46:2091–101.
PubMed
Google Scholar
Ferroni M, De Gaetano F, Cereda MG, Boschetti F. A drug delivery analysis of large molecules in ocular vitreous chamber: Dependency on saccadic movements after intravitreal injection. Med Eng Phys [Internet]. 2020;82:49–57. https://doi.org/10.1016/j.medengphy.2020.06.005 (Elsevier Ltd).
Article
Google Scholar
Silva AF, Pimenta F, Alves MA, Oliveira MSN. Flow dynamics of vitreous humour during saccadic eye movements. J Mech Behav Biomed Mater. 2020;110:103860. https://doi.org/10.1016/j.jmbbm.2020.103860.
Repetto R. An analytical model of the dynamics of the liquefied vitreous induced by saccadic eye movements. Meccanica. 2006;41:101–17.
Google Scholar
Repetto R, Siggers JH, Stocchino A. Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: Effect of geometry. Biomech Model Mechanobiol. 2010;9:65–76.
CAS
PubMed
Google Scholar
Stocchino A, Repetto R, Cafferata C. Eye rotation induced dynamics of a Newtonian fluid within the vitreous cavity: The effect of the chamber shape. Phys Med Biol. 2007;52:2021–34.
PubMed
Google Scholar
Stocchino A, Repetto R, Siggers JH. Mixing processes in the vitreous chamber induced by eye rotations. Phys Med Biol. 2010;55:453–67.
PubMed
Google Scholar
Repetto R, Tatone A, Testa A, Colangeli E. Traction on the retina induced by saccadic eye movements in the presence of posterior vitreous detachment. Biomech Model Mechanobiol. 2011;10:191–202.
CAS
PubMed
Google Scholar
Balachandran RK, Barocas VH. Contribution of saccadic motion to intravitreal drug transport: Theoretical analysis. Pharm Res. 2011;28:1049–64.
CAS
PubMed
PubMed Central
Google Scholar
Abouali O, Modareszadeh A, Ghaffariyeh A, Tu J. Numerical simulation of the fluid dynamics in vitreous cavity due to saccadic eye movement. Med Eng Phys [Internet]. 2012;34:681–92. https://doi.org/10.1016/j.medengphy.2011.09.011 (Institute of Physics and Engineering in Medicine).
Article
Google Scholar
Modareszadeh A, Abouali O, Ghaffarieh A, Ahmadi G. Saccade movements effect on the intravitreal drug delivery in vitreous substitutes: A numerical study. Biomech Model Mechanobiol. 2013;12:281–90.
PubMed
Google Scholar
Cabrera Fernández D, Niazy AM, Kurtz RM, Djotyan GP, Juhasz T. Finite element analysis applied to cornea reshaping. J Biomed Opt. 2005;10:064018.
PubMed
Google Scholar
Deenadayalu C, Mobasher B, Rajan SD, Hall GW. Refractive change induced by the LASIK flap in a biomechanical finite element model. J Refract Surg. 2006;22:286–92.
PubMed
Google Scholar
Pandolfi A, Fotia G, Manganiello F. Finite element simulations of laser refractive corneal surgery. Eng Comput. 2009;25:15–24.
Google Scholar
Sinha Roy A, Dupps WJ Jr. Patient-specific modeling of corneal refractive surgery outcomes and inverse estimation of elastic property changes. J Biomech Eng. 2011;133(1):011002. https://doi.org/10.1115/1.4002934.
Sinha Roy A, Dupps WJ, Roberts CJ. Comparison of biomechanical effects of small-incision lenticule extraction and laser in situ keratomileusis: Finite-element analysis. J Cataract Refract Surg [Internet]. 2014;40:971–80. https://doi.org/10.1016/j.jcrs.2013.08.065 (ASCRS and ESCRS).
Article
Google Scholar
Seven I, Vahdati A, De Stefano VS, Krueger RR, Dupps WJ. Comparison of patient-specific computational modeling predictions and clinical outcomes of lasik for myopia. Investig Ophthalmol Vis Sci. 2016;57:6287–97.
Google Scholar
Ariza-Gracia M, Zurita J, Piñero DP, Calvo B, Rodríguez-Matas JF. Automatized patient-specific methodology for numerical determination of biomechanical corneal response. Ann Biomed Eng. 2016;44:1753–72.
CAS
PubMed
Google Scholar
Bao FJ, Wang JJ, Cao S, Liao N, Shu B, Zhao YP, et al. Development and clinical verification of numerical simulation for laser in situ keratomileusis. J Mech Behav Biomed Mater [Internet]. 2018;83:126–34. https://doi.org/10.1016/j.jmbbm.2018.04.016 (Elsevier Ltd).
Article
Google Scholar
Fang L, Ma W, Wang Y, Dai Y, Fang Z. Theoretical analysis of wave-front aberrations induced from conventional laser refractive surgery in a biomechanical finite element model. Invest Ophthalmol Vis Sci. 2020;61(5):34. https://doi.org/10.1167/iovs.61.5.34.
Article
PubMed
PubMed Central
Google Scholar
Suen WLL, Wong HS, Yu Y, Lau LCM, Lo ACY, Chau Y. Ultrasound-mediated transscleral delivery of macromolecules to the posterior segment of rabbit eye in vivo. Investig Ophthalmol Vis Sci. 2013;54:4358–65.
CAS
Google Scholar
Wang C, Seo SJ, Kim JS, Lee SH, Jeon JK, Kim JW, et al. Intravitreal implantable magnetic micropump for on-demand VEGFR-targeted drug delivery. J Control Release [Internet]. 2018;283:105–12. https://doi.org/10.1016/j.jconrel.2018.05.030 (Elsevier).
CAS
Article
Google Scholar
Otto KJ, Schmidt CE. Neuron-targeted electrical modulation. Science (80- ) [Internet]. 2020;367:1303–4. https://doi.org/10.1126/science.abb0216 (American Association for the Advancement of Science).
CAS
Article
Google Scholar
Lajunen T, Nurmi R, Kontturi L, Viitala L, Yliperttula M, Murtomäki L, et al. Light activated liposomes: Functionality and prospects in ocular drug delivery. J Control Release [Internet]. 2016;244:157–66. https://doi.org/10.1016/j.jconrel.2016.08.024 (Elsevier B.V.).
CAS
Article
Google Scholar
Grimaudo MA, Pescina S, Padula C, Santi P, Concheiro A, Alvarez-Lorenzo C, et al. Poloxamer 407/TPGS Mixed Micelles as Promising Carriers for Cyclosporine Ocular Delivery. Mol Pharm. 2018;15:571–84.
CAS
PubMed
Google Scholar
Kabiri M, Kamal SH, Pawar SV, Roy PR, Derakhshandeh M, Kumar U, et al. A stimulus-responsive, in situ-forming, nanoparticle-laden hydrogel for ocular drug delivery. Drug Deliv Transl Res. 2018;8:484–95.
CAS
PubMed
PubMed Central
Google Scholar
Lin X, Wu X, Chen X, Wang B, Xu W. Intellective and stimuli-responsive drug delivery systems in eyes. Int J Pharm [Internet]. 2021;602:120591. https://doi.org/10.1016/j.ijpharm.2021.120591 (Elsevier B.V.).
CAS
Article
Google Scholar
Zahn D, Klein K, Radon P, Berkov D, Erokhin S, Nagel E, et al. Investigation of magnetically driven passage of magnetic nanoparticles through eye tissues for magnetic drug targeting. Nanotechnology [Internet]. 2020;31:495101. https://doi.org/10.1088/1361-6528/abb0b4 (IOP Publishing).
CAS
Article
Google Scholar
Erokhin S, Berkov D. Magnetic Targeted Drug Delivery to the Human Eye Retina: An Optimization Methodology. IEEE J Electromagn RF Microwaves Med Biol. 2019;3:3–8 (IEEE).
Google Scholar
Eljarrat-Binstock E, Raiskup F, Frucht-Pery J, Domb AJ. Transcorneal and transscleral iontophoresis of dexamethasone phosphate using drug loaded hydrogel. J Control Release. 2005;106:386–90.
CAS
PubMed
Google Scholar
He X, Yuan Z, Gaeke S, Kao WWY, Li SK, Miller D, et al. Laser-Activated Drug Implant for Controlled Release to the Posterior Segment of the Eye. ACS Appl Bio Mater. 2021;4:1461–9.
CAS
PubMed
Google Scholar
Rimpelä AK, Reinisalo M, Hellinen L, Grazhdankin E, Kidron H, Urtti A, et al. Implications of melanin binding in ocular drug delivery. Adv Drug Deliv Rev [Internet]. 2018;126:23–43. https://doi.org/10.1016/j.addr.2017.12.008 (Elsevier B.V.).
CAS
Article
Google Scholar
Urtti A, Salminen L, Kujari H, Jäntti V. Effect of ocular pigmentation on pilocarpine pharmacology in the rabbit eye. II. Drug response. Int J Pharm. 1984;19(1):53–61. https://doi.org/10.1016/0378-5173(84)90132-7.
CAS
Article
Google Scholar
Shibata T, Mishima H, Kurokawa T. Ocular pigmentation and intraocular pressure response to forskolin. Curr Eye Res [Internet]. 1988;7:667–74. https://doi.org/10.3109/02713688809033195 (Taylor & Francis).
CAS
Article
Google Scholar
Leblanc B, Jezequel S, Davies T, Hanton G, Taradach C. Binding of drugs to eye melanin is not predictive of ocular toxicity. Regul Toxicol Pharmacol. 1998;28(2):124–32. https://doi.org/10.1006/rtph.1998.1243.
CAS
Article
PubMed
Google Scholar
Raghavan PR, Zane PA, Tripp SL. Calculation of drug-melanin binding energy using molecular modeling. Experientia [Internet]. 1990;46:77–80. https://doi.org/10.1007/BF01955422.
CAS
Article
Google Scholar
Agrahari V, Mandal A, Agrahari V, Trinh HM, Joseph M, Ray A, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res [Internet]. 2016;6:735–54. https://doi.org/10.1007/s13346-016-0339-2.
CAS
Article
Google Scholar
Hollemans M, Elferink RO, De Groot PG, Strijland A, Tager JM. Accumulation of weak bases in relation to intralysosomal pH in cultured human skin fibroblasts. Biochim Biophys Acta. 1981;643(1):140–51. https://doi.org/10.1016/0005-2736(81)90226-1.
CAS
Article
PubMed
Google Scholar
Lowrey AH, Fameini GR, Loumbev V, Wilson LY, Tosk JM. Modeling Drug-Melanin Interaction With Theoretical Linear Solvation Energy Relationships. Pigment Cell Res [Internet]. 1997;10:251–6. https://doi.org/10.1111/j.1600-0749.1997.tb00684.x (John Wiley & Sons, Ltd).
CAS
Article
Google Scholar
Radwa A, Fra̧ckowiak T, Ibrahim H, Aubry A-F, Kaliszan R. Chromatographic modelling of interactions between melanin and phenothiazine and dibenzazepine drugs. Biomed Chromatogr [Internet]. 1995;9:233–7. https://doi.org/10.1002/bmc.1130090509.
Article
Google Scholar
Reilly J, Williams SL, Forster CJ, Kansara V, End P, Serrano-Wu MH. High-throughput melanin-binding affinity and in silico methods to aid in the prediction of drug exposure in ocular tissue. J Pharm Sci. 2015;104(12):3997–4001. https://doi.org/10.1002/jps.24680.
CAS
Article
PubMed
Google Scholar
Manzanares JA, Rimpelä A-K, Urtti A. Interpretation of ocular melanin drug binding assays. Alternatives to the model of multiple classes of independent sites. Mol Pharm [Internet]. 2016;13:1251–7. https://doi.org/10.1021/acs.molpharmaceut.5b00783.
CAS
Article
Google Scholar
Rimpelä A-K, Schmitt M, Latonen S, Hagström M, Antopolsky M, Manzanares JA, et al. Drug Distribution to Retinal Pigment Epithelium: Studies on Melanin Binding, Cellular Kinetics, and Single Photon Emission Computed Tomography/Computed Tomography Imaging. Mol Pharm [Internet]. 2016;13:2977–86. https://doi.org/10.1021/acs.molpharmaceut.5b00787 (American Chemical Society).
CAS
Article
Google Scholar
Pitkänen L, Ranta VP, Moilanen H, Urtti A. Binding of betaxolol, metoprolol and oligonucleotides to synthetic and bovine ocular melanin, and prediction of drug binding to melanin in human choroid-retinal pigment epithelium. Pharm Res. 2007;24:2063–70.
PubMed
Google Scholar
Menon IA, Trope GE, Basu PK, Wakeham DC, Persad SD. Binding of timolol to iris-ciliary body and melanin: An in vitro model for assessing the kinetics and efficacy of long-acting antiglaucoma drugs. J Ocul Pharmacol Ther [Internet]. 1989;5:313–24. https://doi.org/10.1089/jop.1989.5.313 (Mary Ann Liebert, Inc., publishers).
CAS
Article
Google Scholar
Borrelli E, Sacconi R, Brambati M, Bandello F, Querques G. In vivo rotational three-dimensional OCTA analysis of microaneurysms in the human diabetic retina. Sci Rep. 2019;9:1–8.
Google Scholar