Skip to main content
Log in

Droplet-Based Microfluidic Tool to Quantify Viscosity of Concentrating Protein Solutions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Measurement of the viscosity of concentrated protein solutions is vital for the manufacture and delivery of protein therapeutics. Conventional methods for viscosity measurements require large solution volumes, creating a severe limitation during the early stage of protein development. The goal of this work is to develop a robust technique that requires minimal sample.

Methods

In this work, a droplet-based microfluidic device is developed to quantify the viscosity of protein solutions while concentrating in micrometer-scale droplets. The technique requires only microliters of sample. The corresponding viscosity is characterized by multiple particle tracking microrheology (MPT).

Results

We show that the viscosities quantified in the microfluidic device are consistent with macroscopic results measured by a conventional rheometer for poly(ethylene) glycol (PEG) solutions. The technique was further applied to quantify viscosities of well-studied lysozyme and bovine serum albumin (BSA) solutions. Comparison to both macroscopic measurements and models (Krieger-Dougherty model) demonstrate the validity of the approach.

Conclusion

The droplet-based microfluidic device provides accurate quantitative values of viscosity over a range of concentrations for protein solutions with small sample volumes (~ μL) and high compositional resolution. This device will be extended to study the effect of different excipients and other additives on the viscosity of protein solutions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

MPT:

Multiple particle tracking microrheology

PEG:

Poly(ethylene) glycol

BSA:

Bovine Serum Albumin

MSD:

Mean-squared displacement

PDMS:

Polydimethylsiloxane

References

  1. Lagassé HD, Alexaki A, Simhadri VL, Katagiri NH, Jankowski W, Sauna ZE, Kimchi-Sarfaty C. Recent advances in (therapeutic protein) drug development. F1000Research. 2017;6 (F1000 Faculty Rev):113. https://doi.org/10.12688/f1000research.9970.1

  2. Du W, Klibanov AM. Hydrophobic salts markedly diminish viscosity of concentrated protein solutions. Biotechnol Bioeng. 2011;108(3):632–6. https://doi.org/10.1002/bit.22983.

    Article  CAS  PubMed  Google Scholar 

  3. Inoue N, Takai E, Arakawa T, Shiraki K. Arginine and lysine reduce the high viscosity of serum albumin solutions for pharmaceutical injection. J Biosci Bioeng. 2014;117(5):539–43. https://doi.org/10.1016/j.jbiosc.2013.10.016.

    Article  CAS  PubMed  Google Scholar 

  4. Shire SJ, Shahrokh Z, Liu JU. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004;93(6):1390–402. https://doi.org/10.1002/jps.20079.

    Article  CAS  PubMed  Google Scholar 

  5. Harris RJ, Shire SJ, Winter C. Commercial manufacturing scale formulation and analytical characterization of therapeutic recombinant antibodies. Drug Dev Res. 2004;61(3):137–54. https://doi.org/10.1002/ddr.10344.

    Article  CAS  Google Scholar 

  6. Berteau C, Filipe-Santos O, Wang T, Rojas HE, Granger C, Schwarzenbach F. Evaluation of the impact of viscosity, injection volume, and injection flow rate on subcutaneous injection tolerance. Medical Devices (Auckland, NZ). 2015;8:473. https://doi.org/10.2147/MDER.S91019.

    Article  Google Scholar 

  7. Liu J, Nguyen MD, Andya JD, Shire SJ. Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J Pharm Sci. 2006;95(1):234–5. https://doi.org/10.1002/jps.20347.

    Article  CAS  Google Scholar 

  8. Johnson HR, Lenhoff AM. Characterization and suitability of therapeutic antibody dense phases for subcutaneous delivery. Mol Pharm. 2013;10(10):3582–91. https://doi.org/10.1021/mp400006g.

    Article  CAS  PubMed  Google Scholar 

  9. Daugherty AL, Mrsny RJ. Formulation and delivery issues for monoclonal antibody therapeutics. Adv Drug Deliv Rev. 2006;58(5–6):686–706. https://doi.org/10.1016/j.addr.2006.03.011.

    Article  CAS  PubMed  Google Scholar 

  10. Braun A, Kwee L, Labow MA, Alsenz J. Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-α) in normal and transgenic mice. Pharm Res. 1997;14(10):1472–8. https://doi.org/10.1023/A:1012193326789.

    Article  CAS  PubMed  Google Scholar 

  11. Koren E, Zuckerman LA, Mire-Sluis AR. Immune responses to therapeutic proteins in humans-clinical significance, assessment and prediction. Curr Pharm Biotechnol. 2002;3(4):349–60. https://doi.org/10.2174/1389201023378175.

    Article  CAS  PubMed  Google Scholar 

  12. Cleland JL, Powell MF, Shire SJ. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst. 1993;10(4):307–77.

    CAS  PubMed  Google Scholar 

  13. He F, Woods CE, Litowski JR, Roschen LA, Gadgil HS, Razinkov VI, Kerwin BA. Effect of sugar molecules on the viscosity of high concentration monoclonal antibody solutions. Pharm Res. 2011;28(7):1552–60. https://doi.org/10.1007/s11095-011-0388-7.

    Article  CAS  PubMed  Google Scholar 

  14. Inoue N, Takai E, Arakawa T, Shiraki K. Specific decrease in solution viscosity of antibodies by arginine for therapeutic formulations. Mol Pharm. 2014;11(6):1889–96. https://doi.org/10.1021/mp5000218.

    Article  CAS  PubMed  Google Scholar 

  15. Wang S, Zhang N, Hu T, Dai W, Feng X, Zhang X, Qian F. Viscosity-lowering effect of amino acids and salts on highly concentrated solutions of two IgG1 monoclonal antibodies. Mol Pharm. 2015;12(12):4478–87. https://doi.org/10.1021/acs.molpharmaceut.5b00643.

    Article  CAS  PubMed  Google Scholar 

  16. Kanai S, Liu JU, Patapoff TW, Shire SJ. Reversible self-association of a concentrated monoclonal antibody solution mediated by Fab-Fab interaction that impacts solution viscosity. J Pharm Sci. 2008;97(10):4219–27. https://doi.org/10.1002/jps.21322.

    Article  CAS  PubMed  Google Scholar 

  17. Yadav S, Shire SJ, Kalonia DS. Viscosity analysis of high concentration bovine serum albumin aqueous solutions. Pharm Res. 2011;28(8):1973–83. https://doi.org/10.1007/s11095-011-0424-7.

    Article  CAS  PubMed  Google Scholar 

  18. Benoit SM, Afizah MN, Ruttarattanamongkol K, Rizvi SS. Effect of pH and temperature on the viscosity of texturized and commercial whey protein dispersions. Int J Food Prop. 2013;16(2):322–30. https://doi.org/10.1080/10942912.2011.552015.

    Article  CAS  Google Scholar 

  19. Sharma V, Jaishankar A, Wang YC, McKinley GH. Rheology of globular proteins: apparent yield stress, high shear rate viscosity and interfacial viscoelasticity of bovine serum albumin solutions. Soft Matter. 2011;7(11):5150–60. https://doi.org/10.1039/C0SM01312A.

    Article  CAS  Google Scholar 

  20. Castellanos MM, Pathak JA, Colby RH. Both protein adsorption and aggregation contribute to shear yielding and viscosity increase in protein solutions. Soft Matter. 2014;10(1):122–31. https://doi.org/10.1039/C3SM51994E.

    Article  CAS  PubMed  Google Scholar 

  21. Josephson LL, Furst EM, Galush WJ. Particle tracking microrheology of protein solutions. J Rheol. 2016;60(4):531–40. https://doi.org/10.1122/1.4948427.

    Article  CAS  Google Scholar 

  22. Kim S, Kim KC, Yeom E. Microfluidic method for measuring viscosity using images from smartphone. Opt Lasers Eng. 2018;104:237–43. https://doi.org/10.1016/j.optlaseng.2017.05.016.

    Article  Google Scholar 

  23. Wang G, Tan C, Li F. A contact resonance viscometer based on the electromechanical impedance of a piezoelectric cantilever. Sens Actuators, A. 2017;267:401–8. https://doi.org/10.1016/j.sna.2017.10.041.

    Article  CAS  Google Scholar 

  24. Foffi G, Savin G, Bucciarelli S, Dorsaz N, Thurston GM, Stradner A, Schurtenberger P. Hard sphere-like glass transition in eye lens α-crystallin solutions. Proc Natl Acad Sci. 2014;111(47):16748–53. https://doi.org/10.1073/pnas.1406990111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heinen M, Zanini F, Roosen-Runge F, Fedunová D, Zhang F, Hennig M, Seydel T, Schweins R, Sztucki M, Antalík M, Schreiber F. Viscosity and diffusion: crowding and salt effects in protein solutions. Soft Matter. 2012;8(5):1404–19. https://doi.org/10.1039/C1SM06242E.

    Article  CAS  Google Scholar 

  26. Sarangapani PS, Hudson SD, Migler KB, Pathak JA. The limitations of an exclusively colloidal view of protein solution hydrodynamics and rheology. Biophys J . 2013;105(10):2418–26. https://doi.org/10.1016/j.bpj.2013.10.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bleier BJ, Anna SL, Walker LM. Microfluidic droplet-based tool to determine phase behavior of a fluid system with high composition resolution. J Phys Chem B. 2018;122(14):4067–76. https://doi.org/10.1021/acs.jpcb.8b01013.

    Article  CAS  PubMed  Google Scholar 

  28. Xia Y, Whitesides GM. Soft lithography. Annu Rev Mater Sci. 1998;28(1):153–84. https://doi.org/10.1146/annurev.matsci.28.1.153.

    Article  CAS  Google Scholar 

  29. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM. Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis: Int J. 2000;21(1):27–40. https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1%3c27::AID-ELPS27%3e3.0.CO;2-C.

  30. Bleier BJ. Droplet-Based Approaches to Probe Complex Behavior in Colloidal Fluids with High Composition Resolution (No. 10816201). 2018; (Doctoral dissertation, Carnegie Mellon University). Retrieved from https://www.proquest.com/dissertations-theses/droplet-based-approaches-probecomplex-behavior/docview/2048167241/se-2?accountid=9902

  31. Vuong SM. A microfluidic platform for the control and analysis of phase transitions in concentrating droplets (No. 3690561). 2014; (Doctoral dissertation, Carnegie Mellon University). Retrieved from https://www.proquest.com/dissertations-theses/microfluidic-platform-controlanalysis-phase/docview/1665305117/se-2?accountid=9902

  32. Savin T, Doyle PS. Static and dynamic errors in particle tracking microrheology. Biophys J . 2005;88(1):623–38. https://doi.org/10.1529/biophysj.104.042457.

    Article  CAS  PubMed  Google Scholar 

  33. Crocker JC, Grier DG. Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci. 1996;179(1):298–310. https://doi.org/10.1006/jcis.1996.0217.

    Article  CAS  Google Scholar 

  34. Wehrman MD, Leduc A, Callahan HE, Mazzeo MS, Schumm M, Schultz KM. Rheological properties and structure of step-and chain-growth gels concentrated above the overlap concentration. AIChE J. 2018;64(8):3168–76. https://doi.org/10.1002/aic.16062.

    Article  CAS  Google Scholar 

  35. Breedveld V, Pine DJ. Microrheology as a tool for high-throughput screening. J Mater Sci. 2003;38(22):4461–70. https://doi.org/10.1023/A:1027321232318.

    Article  CAS  Google Scholar 

  36. Wehrman MD, Lindberg S, Schultz KM. Multiple particle tracking microrheology measured using bi-disperse probe diameters. Soft Matter. 2018;14(28):5811–20. https://doi.org/10.1039/C8SM01098F.

    Article  CAS  PubMed  Google Scholar 

  37. Swan JW, Brady JF. Particle motion between parallel walls: Hydrodynamics and simulation. Phys Fluids. 2010;22(10):103301. https://doi.org/10.1063/1.348774838.

    Article  Google Scholar 

  38. McGlynn JA, Wu N, Schultz KM. Multiple particle tracking microrheological characterization: Fundamentals, emerging techniques and applications. J Appl Phys. 2020;127(20):201101. https://doi.org/10.1063/5.0006122.

    Article  CAS  Google Scholar 

  39. Huggins ML. The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. J Am Chem Soc. 1942;64(11):2716–8.

    Article  CAS  Google Scholar 

  40. Back DM, Schmitt RL. Ethylene oxide polymers. Kirk-Othmer Encycl Chem Technol. 2000. https://doi.org/10.1002/0471238961.

    Article  Google Scholar 

  41. Ziębacz N, Wieczorek SA, Kalwarczyk T, Fiałkowski M, Hołyst R. Crossover regime for the diffusion of nanoparticles in polyethylene glycol solutions: influence of the depletion layer. Soft Matter. 2011;7(16):7181–6. https://doi.org/10.1039/C0SM01357A.

    Article  Google Scholar 

  42. Krieger IM, Dougherty TJ. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Transactions of the Society of Rheology. 1959;3(1):137–52. https://doi.org/10.1122/1.548848.

    Article  CAS  Google Scholar 

  43. Quemada D, Berli C. Energy of interaction in colloids and its implications in rheological modeling. Adv Coll Interface Sci. 2002;98(1):51–85. https://doi.org/10.1016/S0001-8686(01)00093-8.

    Article  CAS  Google Scholar 

  44. Donev A, Cisse I, Sachs D, Variano EA, Stillinger FH, Connelly R, Torquato S, Chaikin PM. Improving the density of jammed disordered packings using ellipsoids. Science. 2004 Feb;303(5660):990–3. https://doi.org/10.1126/science.1093010.

  45. Zhang Z, Liu Y. Recent progresses of understanding the viscosity of concentrated protein solutions. Curr Opin Chem Eng. 2017;16:48–55. https://doi.org/10.1016/j.coche.2017.04.001.

    Article  Google Scholar 

  46. Liu J, Thompson ZJ, Sue HJ, Bates FS, Hillmyer MA, Dettloff M, Jacob G, Verghese N, Pham H. Toughening of epoxies with block copolymer micelles of wormlike morphology. Macromolecules. 2010;43(17):7238–43. https://doi.org/10.1021/ma902471g.

    Article  CAS  Google Scholar 

  47. Godfrin PD, Hudson SD, Hong K, Porcar L, Falus P, Wagner NJ, Liu Y. Short-time glassy dynamics in viscous protein solutions with competing interactions. Phys Rev Lett. 2015;115(22): 228302. https://doi.org/10.1103/PhysRevLett.115.228302.

    Article  CAS  PubMed  Google Scholar 

  48. Beverung CJ, Radke CJ, Blanch HW. Protein adsorption at the oil/water interface: characterization of adsorption kinetics by dynamic interfacial tension measurements. Biophys Chem. 1999;81(1):59–80. https://doi.org/10.1016/S0301-4622(99)00082-4.

    Article  CAS  PubMed  Google Scholar 

  49. T S, S D, . A New Methodology for Studying Protein Adsorption at Oil-Water Interfaces. J Colloid Interface Sci. 1998;206:407–15.

    Article  Google Scholar 

  50. Garting T, Stradner A. Synthesis and application of PEGylated tracer particles for measuring protein solution viscosities using Dynamic Light Scattering-based microrheology. Colloids Surf, B. 2019;181:516–23. https://doi.org/10.1016/j.colsurfb.2019.05.059.

    Article  CAS  Google Scholar 

  51. Furst EM, Squires TM. Microrheology. Oxford University Press; 2017.

Download references

Acknowledgements

The authors would like to acknowledge Dr. Junchi Ma for bulk rheology measurements of 100 kg/mol PEG solutions. Funding for this work is provided by department of Chemical Engineering, Carnegie Mellon University. The authors report no conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn M. Walker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 87.5 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Daviran, M., Schultz, K.M. et al. Droplet-Based Microfluidic Tool to Quantify Viscosity of Concentrating Protein Solutions. Pharm Res 38, 1765–1775 (2021). https://doi.org/10.1007/s11095-021-03106-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03106-9

Keywords

Navigation