Skip to main content
Log in

Berberine Improves the Protective Effects of Metformin on Diabetic Nephropathy in db/db Mice through Trib1-dependent Inhibiting Inflammation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Diabetic nephropathy (DN), one of severe diabetic complications in the diabetes, is the main cause of end stage renal disease (ESRD). Notably, the currently available medications used to treat DN remain limited. Here, we determined whether berberine (BBR) could enhance the anti-diabetic nephropathy activities of metformin (Met) and explored its possible mechanisms.

Method

The anti-diabetic nephropathy properties were systematically analyzed in the diabetic db/db mice treated with Met, BBR or with combination of Met and BBR.

Results

We found that both single Met and BBR treatments, and combination therapy could lower blood glucose, and ameliorate insulin resistance. The improvement of lipids metabolism by co-administration was more evident, as indicated by reduced serum cholesterol and less fat accumulation in the liver. Further, it was found that Met and BBR treatments, and co-administration could attenuate the progression of DN. However, anti-diabetic nephropathy activities of Met were enhanced when combined with BBR, as evidenced by improved renal function and histological abnormalities of diabetic kidney. Mechanistically, BBR enhanced renal-protective effects of Met primarily through potently promoting expression of Trib1, which subsequently downregulated the increased protein levels of CCAAT/enhancer binding protein α (C/EBPα), and eventually inhibited fatty synthesis proteins and nuclear factor kappa-B (NF-κB) signaling.

Conclusion

Our data provide novel insight that co-administration of BBR and Met exerts a preferable activity of anti-diabetic nephropathy via collectively enhancing lipolysis and inhibiting inflammation. Combination therapy with these two drugs may provide an effective therapeutic strategy for the medical treatment of diabetic nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Remuzzi G, Schieppati A, Ruggenenti P. Clinical practice Nephropathy in patients with type 2 diabetes. N Engl J Med. 2002;346(15):1145–51.

    Article  PubMed  Google Scholar 

  2. Papadopoulou-Marketou N, Paschou SA, Marketos N, Adamidi S, Adamidis S, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes. Minerva Med. 2018;109(3):218–28.

    Article  PubMed  Google Scholar 

  3. Jones CA, Krolewski AS, Rogus J, Xue JL, Collins A, Warram JH. Epidemic of end-stage renal disease in people with diabetes in the United States population: do we know the cause? Kidney Int. 2005;67(5):1684–91.

    Article  PubMed  Google Scholar 

  4. Zhang L, Long J, Jiang W, Shi Y, He X, Zhou Z, Li Y, Yeung RO, Wang J, Matsushita K, Coresh J, Zhao MH, Wang H. Trends in chronic kidney disease in China. N Engl J Med. 2016;375(9):905–6.

    Article  PubMed  Google Scholar 

  5. Ritz E, Zeng XX, Rychlik I. Clinical manifestation and natural history of diabetic nephropathy. Contrib Nephrol. 2011;170:19–27.

    Article  PubMed  Google Scholar 

  6. Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, Ferrario F, Fogo AB, Haas M, de Heer E, Joh K, Noel LH, Radhakrishnan J, Seshan SV, Bajema IM, Bruijn JA, Renal PS. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556–63.

    Article  PubMed  Google Scholar 

  7. Fioretto P, Mauer M. Diabetic nephropathy: diabetic nephropathy-challenges in pathologic classification. Nat Rev Nephrol. 2010;6(9):508–10.

    Article  PubMed  Google Scholar 

  8. Yiu WH, Li RX, Wong DWL, Wu HJ, Chan KW, Chan LYY, Leung JCK, Lai KN, Sacks SH, Zhou W, Tang SCW. Complement C5a inhibition moderates lipid metabolism and reduces tubulointerstitial fibrosis in diabetic nephropathy. Nephrol Dial Transplant. 2018;33(8):1323–32.

    Article  CAS  PubMed  Google Scholar 

  9. Alomari G, Al-Trad B, Hamdan S, Aljabali A, Al-Zoubi M, Bataineh N, Qar J, Tambuwala MM. Gold nanoparticles attenuate albuminuria by inhibiting podocyte injury in a rat model of diabetic nephropathy. Drug Deliv Transl Res. 2020;10(1):216–26.

  10. Ding T, Wang S, Zhang X, Zai W, Fan J, Chen W, Bian Q, Luan J, Shen Y, Zhang Y, Ju D, Mei X. Kidney protection effects of dihydroquercetin on diabetic nephropathy through suppressing ROS and NLRP3 inflammasome. Phytomedicine. 2018;41:45–53.

    Article  CAS  PubMed  Google Scholar 

  11. Lu Q, Wang WW, Zhang MZ, Ma ZX, Qiu XR, Shen M, Yin XX. ROS induces epithelial-mesenchymal transition via the TGF-beta1/PI3K/Akt/mTOR pathway in diabetic nephropathy. Exp Ther Med. 2019;17(1):835–46.

    CAS  PubMed  Google Scholar 

  12. Yuan Y, Sun H, Sun Z. Advanced glycation end products (AGEs) increase renal lipid accumulation: a pathogenic factor of diabetic nephropathy (DN). Lipids Health Dis. 2017;16(1):126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Moreno JA, Gomez-Guerrero C, Mas S, Sanz AB, Lorenzo O, Ruiz-Ortega M, Opazo L, Mezzano S, Egido J. Targeting inflammation in diabetic nephropathy: a tale of hope. Expert Opin Investig Drugs. 2018;27(11):917–30.

    Article  CAS  PubMed  Google Scholar 

  14. Wu M, Han W, Song S, Du Y, Liu C, Chen N, Wu H, Shi Y, Duan H. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice. Mol Cell Endocrinol. 2018;478:115–25.

    Article  CAS  PubMed  Google Scholar 

  15. Rovira-Llopis S, Escribano-Lopez I, Diaz-Morales N, Iannantuoni F, Lopez-Domenech S, Andujar I, Jover A, Pantoja J, Pallardo LM, Banuls C, Victor VM. Downregulation of miR-31 in Diabetic Nephropathy and its relationship with inflammation. Cell Physiol Biochem. 2018;50(3):1005–14.

    Article  CAS  PubMed  Google Scholar 

  16. Izaola O, de Luis D, Sajoux I, Domingo JC, Vidal M. Inflammation and obesity (lipoinflammation). Nutr Hosp. 2015;31(6):2352–8.

    CAS  PubMed  Google Scholar 

  17. Hadinia A, Doustimotlagh AH, Goodarzi HR, Arya A, Jafarinia M. Circulating levels of pro-inflammatory cytokines in patients with nonalcoholic fatty liver disease and non-alcoholic steatohepatitis. Iran J Immunol. 2019;16(4):327–33.

    PubMed  Google Scholar 

  18. Xu F, Gao Z, Zhang J, Rivera CA, Yin J, Weng J, Ye J. Lack of SIRT1 (Mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/- mice: a role of lipid mobilization and inflammation. Endocrinology. 2010;151(6):2504–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martinez-Garcia C, Izquierdo-Lahuerta A, Vivas Y, Velasco I, Yeo TK, Chen S, Medina-Gomez G. Renal lipotoxicity-associated inflammation and insulin resistance affects actin cytoskeleton organization in podocytes. PLoS One. 2015;10(11):e0142291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zheng C, Zhang J, Chen X, Zhang J, Ding X, You X, Fan L, Chen C, Zhou Y. MicroRNA-155 mediates obesity-induced renal inflammation and dysfunction. Inflammation. 2019;42(3):994–1003.

    Article  CAS  PubMed  Google Scholar 

  21. Ishizuka Y, Nakayama K, Ogawa A, Makishima S, Boonvisut S, Hirao A, Iwasaki Y, Yada T, Yanagisawa Y, Miyashita H, Takahashi M, Iwamoto S, Jichi Medical University Promotion Team of Large-Scale Human Genome Bank for All over J. TRIB1 downregulates hepatic lipogenesis and glycogenesis via multiple molecular interactions. J Mol Endocrinol. 2014;52(2):145–58.

    Article  CAS  PubMed  Google Scholar 

  22. Satoh T, Kidoya H, Naito H, Yamamoto M, Takemura N, Nakagawa K, Yoshioka Y, Morii E, Takakura N, Takeuchi O, Akira S. Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature. 2013;495(7442):524–8.

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto M, Uematsu S, Okamoto T, Matsuura Y, Sato S, Kumar H, Satoh T, Saitoh T, Takeda K, Ishii KJ, Takeuchi O, Kawai T, Akira S. Enhanced TLR-mediated NF-IL6 dependent gene expression by Trib1 deficiency. J Exp Med. 2007;204(9):2233–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xie X, Yang X, Wu J, Ma J, Wei W, Fei X, Wang M. Trib1 contributes to recovery from Ischemia/Reperfusion-Induced Acute Kidney injury by regulating the Polarization of Renal Macrophages. Front Immunol. 2020;11:473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ashton-Chess J, Giral M, Mengel M, Renaudin K, Foucher Y, Gwinner W, Braud C, Dugast E, Quillard T, Thebault P, Chiffoleau E, Braudeau C, Charreau B, Soulillou JP, Brouard S. Tribbles-1 as a novel biomarker of chronic antibody-mediated rejection. J Am Soc Nephrol. 2008;19(6):1116–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang CS, Li M, Ma T, Zong Y, Cui J, Feng JW, Wu YQ, Lin SY, Lin SC. Metformin activates AMPK through the lysosomal pathway. Cell Metab. 2016;24(4):521–2.

    Article  PubMed  CAS  Google Scholar 

  27. Xu J, Liu LQ, Xu LL, Xing Y, Ye S. Metformin alleviates renal injury in diabetic rats by inducing Sirt1/FoxO1 autophagic signal axis. Clin Exp Pharmacol Physiol. 2020;47(4):599–608.

  28. Zhang L, Niu J, Zhang X, He W. Metformin can alleviate the symptom of patient with Diabetic Nephropathy through reducing the serum level of Hcy and IL-33. Open Med (Wars). 2019;14:625–8.

    Article  CAS  Google Scholar 

  29. Sun Y, Xia M, Yan H, Han Y, Zhang F, Hu Z, Cui A, Ma F, Liu Z, Gong Q, Chen X, Gao J, Bian H, Tan Y, Li Y, Gao X. Berberine attenuates hepatic steatosis and enhances energy expenditure in mice by inducing autophagy and fibroblast growth factor 21. Br J Pharmacol. 2018;175(2):374–87.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu X, Yang J, Zhu W, Yin X, Yang B, Wei Y, Guo X. Combination of Berberine with Resveratrol improves the lipid-lowering efficacy. Int J Mol Sci. 2018;19(12):3903.

    Article  PubMed Central  CAS  Google Scholar 

  31. Zhu L, Han J, Yuan R, Xue L, Pang W. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-kappaB pathway. Biol Res. 2018;51(1):9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Yang C, Feng Q, Liao H, Yu X, Liu Y, Wang D. Anti-diabetic nephropathy activities of polysaccharides obtained from termitornyces albuminosus via regulation of NF-kappaB signaling in db/db mice. Int J Mol Sci. 2019;20(20):5205.

    Article  CAS  PubMed Central  Google Scholar 

  33. Cipolletta E, Gambardella J, Fiordelisi A, Del Giudice C, Di Vaia E, Ciccarelli M, Sala M, Campiglia P, Coscioni E, Trimarco B, Sorriento D, Iaccarino G. Antidiabetic and cardioprotective effects of pharmacological inhibition of grk2 in db/db mice. Int J Mol Sci. 2019;20(6):1492.

    Article  CAS  PubMed Central  Google Scholar 

  34. Wang X, Zhao L, Ajay AK, Jiao B, Zhang X, Wang C, Gao X, Yuan Z, Liu H, Liu WJ. QiDiTangShen granules activate renal nutrient-sensing associated autophagy in db/db mice. Front Physiol. 2019;10:1224.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang B, Zhang J, Zhang C, Zhang X, Ye J, Kuang S, Sun G, Sun X. Notoginsenoside R1 protects against diabetic cardiomyopathy through activating estrogen receptor alpha and its downstream signaling. Front Pharmacol. 2018;9:1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang B, Zhang X, Zhang C, Shen Q, Sun G, Sun X. Notoginsenoside R1 protects db/db mice against diabetic nephropathy via upregulation of Nrf2-mediated HO-1 expression. Molecules. 2019;24(2):247.

    Article  PubMed Central  CAS  Google Scholar 

  37. Dong B, Zhou Y, Wang W, Scott J, Kim KH, Sun Z, Guo Q, Lu Y, Gonzales NM, Wu H, Hartig S, York RB, Yang F, Moore DD. Vitamin D receptor activation in liver macrophages ameliorates hepatic inflammation, steatosis, and insulin resistance in mice. Hepatology. 2020;71(5):1559–1574.

  38. Ben J, Jiang B, Wang D, Liu Q, Zhang Y, Qi Y, Tong X, Chen L, Liu X, Zhang Y, Zhu X, Li X, Zhang H, Bai H, Yang Q, Ma J, Wiemer EAC, Xu Y, Chen Q. Major vault protein suppresses obesity and atherosclerosis through inhibiting IKK-NF-kappaB signaling mediated inflammation. Nat Commun. 2019;10(1):1801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond). 2013;124(3):139–52.

    Article  CAS  Google Scholar 

  40. Yang S, Chen Y, Duan Y, Ma C, Liu L, Li Q, Yang J, Li X, Zhao B, Wang Y, Qian K, Liu M, Zhu Y, Yang X, Han J. Therapeutic potential of NaoXinTong Capsule on the developed diabetic nephropathy in db/db mice. Biomed Pharmacother. 2019;118:109389.

    Article  CAS  PubMed  Google Scholar 

  41. Singh AB, Liu J. Berberine decreases plasma triglyceride levels and upregulates hepatic TRIB1 in LDLR wild type mice and in LDLR deficient mice. Sci Rep. 2019;9(1):15641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Bauer RC, Sasaki M, Cohen DM, Cui J, Smith MA, Yenilmez BO, Steger DJ, Rader DJ. Tribbles-1 regulates hepatic lipogenesis through posttranscriptional regulation of C/EBPalpha. J Clin Invest. 2015;125(10):3809–18.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dooher JE, Paz-Priel I, Houng S, Baldwin AS Jr, Friedman AD. C/EBPalpha, C/EBPalpha oncoproteins, or C/EBPbeta preferentially bind NF-kappaB p50 compared with p65, focusing therapeutic targeting on the C/EBP:p50 interaction. Mol Cancer Res. 2011;9(10):1395–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang D, Paz-Priel I, Friedman AD. NF-kappa B p50 regulates C/EBP alpha expression and inflammatory cytokine-induced neutrophil production. J Immunol. 2009;182(9):5757–62.

    Article  CAS  PubMed  Google Scholar 

  45. Hofni A, El-Moselhy MA, Taye A, Khalifa MM. Combination therapy with spironolactone and candesartan protects against streptozotocin-induced diabetic nephropathy in rats. Eur J Pharmacol. 2014;744:173–82.

    Article  CAS  PubMed  Google Scholar 

  46. Magee C, Grieve DJ, Watson CJ, Brazil DP. Diabetic nephropathy: a tangled web to unweave. Cardiovasc Drugs Ther. 2017;31(5–6):579–92.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sulaiman MK. Diabetic nephropathy: recent advances in pathophysiology and challenges in dietary management. Diabetol Metab Syndr. 2019;11:7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang Y, Ma KL, Liu J, Wu Y, Hu ZB, Liu L, Liu BC. Dysregulation of low-density lipoprotein receptor contributes to podocyte injuries in diabetic nephropathy. Am J Physiol Endocrinol Metab. 2015;308(12):E1140-1148.

    Article  PubMed  CAS  Google Scholar 

  49. Yokoyama H, Sone H, Oishi M, Kawai K, Fukumoto Y, Kobayashi M, Japan Diabetes Clinical Data Management Study G. Prevalence of albuminuria and renal insufficiency and associated clinical factors in type 2 diabetes: the Japan diabetes clinical data management study (JDDM15). Nephrol Dial Transplant. 2009;24(4):1212–9.

    Article  CAS  PubMed  Google Scholar 

  50. Pourghasem M, Shafi H, Babazadeh Z. Histological changes of kidney in diabetic nephropathy. Caspian J Intern Med. 2015;6(3):120–7.

    PubMed  PubMed Central  Google Scholar 

  51. Brinkkoetter PT, Ising C, Benzing T. The role of the podocyte in albumin filtration. Nat Rev Nephrol. 2013;9(6):328–36.

    Article  CAS  PubMed  Google Scholar 

  52. Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol. 2003;14(5):1358–73.

    Article  CAS  PubMed  Google Scholar 

  53. Alsaad KO, Edrees B, Rahim KA, Alanazi A, Ahmad M, Aloudah N. Collagenofibrotic (Collagen Type III) glomerulopathy in association with diabetic nephropathy. Saudi J Kidney Dis Transpl. 2017;28(4):898–905.

    PubMed  Google Scholar 

  54. Wei W, An XR, Jin SJ, Li XX, Xu M. Inhibition of insulin resistance by PGE1 via autophagy-dependent FGF21 pathway in diabetic nephropathy. Sci Rep. 2018;8(1):9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wei PZ, Szeto CC. Mitochondrial dysfunction in diabetic kidney disease. Clin Chim Acta. 2019;496:108–16.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Y, Yang S, Cui X, Yang J, Zheng M, Jia J, Han F, Yang X, Wang J, Guo Z, Chang B, Chang B. Hyperinsulinemia can cause kidney disease in the IGT stage of OLETF rats via the INS/IRS-1/PI3-K/Akt signaling pathway. J Diabetes Res. 2019;2019:4709715.

    PubMed  PubMed Central  Google Scholar 

  57. Carre JE, Affourtit C. Mitochondrial activity and skeletal muscle insulin resistance in kidney disease. Int J Mol Sci. 2019;20(11):2751.

    Article  CAS  PubMed Central  Google Scholar 

  58. Liu XL, Cao HX, Wang BC, Xin FZ, Zhang RN, Zhou D, Yang RX, Zhao ZH, Pan Q, Fan JG. miR-192-5p regulates lipid synthesis in non-alcoholic fatty liver disease through SCD-1. World J Gastroenterol. 2017;23(46):8140–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tanaka Y, Kume S, Chin-Kanasaki M, Araki H, Araki SI, Ugi S, Sugaya T, Uzu T, Maegawa H. Renoprotective effect of DPP-4 inhibitors against free fatty acid-bound albumin-induced renal proximal tubular cell injury. Biochem Biophys Res Commun. 2016;470(3):539–45.

    Article  CAS  PubMed  Google Scholar 

  60. Zhao X, Chen X, Zhang Y, George J, Cobbs A, Wang G, Li L, Emmett N. Kidney injury molecule-1 is upregulated in renal lipotoxicity and mediates palmitate-induced tubular cell injury and inflammatory response. Int J Mol Sci. 2019;20(14):3406.

    Article  PubMed Central  CAS  Google Scholar 

  61. Baek JE, Yang WS, Chang JW, Kim SB, Park SK, Park JS, Lee SK. Fatty acid-bearing albumin induces VCAM-1 expression through c-Src kinase-AP-1/NF-kB pathways: effect of L-carnitine. Kidney Blood Press Res. 2010;33(1):72–84.

    Article  CAS  PubMed  Google Scholar 

  62. Yan Z, Zang B, Gong X, Ren J, Wang R. MiR-214–3p exacerbates kidney damages and inflammation induced by hyperlipidemic pancreatitis complicated with acute renal injury. Life Sci. 2019;241:117118.

    Article  PubMed  CAS  Google Scholar 

  63. Lee ES, Kwon MH, Kim HM, Kim N, Kim YM, Kim HS, Lee EY, Chung CH. Dibenzoylmethane ameliorates lipid-induced inflammation and oxidative injury in diabetic nephropathy. J Endocrinol. 2019;240(2):169–79.

    Article  CAS  PubMed  Google Scholar 

  64. Malinska H, Skop V, Trnovska J, Markova I, Svoboda P, Kazdova L, Haluzik M. Metformin attenuates myocardium dicarbonyl stress induced by chronic hypertriglyceridemia. Physiol Res. 2018;67(2):181–9.

    Article  CAS  PubMed  Google Scholar 

  65. Kung JE, Jura N. The pseudokinase TRIB1 toggles an intramolecular switch to regulate COP1 nuclear export. EMBO J. 2019;38(4):e99708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Burkhardt R, Toh SA, Lagor WR, Birkeland A, Levin M, Li X, Robblee M, Fedorov VD, Yamamoto M, Satoh T, Akira S, Kathiresan S, Breslow JL, Rader DJ. Trib1 is a lipid- and myocardial infarction-associated gene that regulates hepatic lipogenesis and VLDL production in mice. J Clin Invest. 2010;120(12):4410–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nguyen P, Valanejad L, Cast A, Wright M, Garcia JM, El-Serag HB, Karns R, Timchenko NA. Elimination of age-associated hepatic steatosis and correction of aging phenotype by inhibition of cdk4-C/EBPalpha-p300 axis. Cell Rep. 2018;24(6):1597–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mousum SA, Ahmed S, Gawali B, Kwatra M, Ahmed A, Lahkar M. Nyctanthes arbor-tristis leaf extract ameliorates hyperlipidemia- and hyperglycemia-associated nephrotoxicity by improving anti-oxidant and anti-inflammatory status in high-fat diet-streptozotocin-induced diabetic rats. Inflammopharmacology. 2018;26(6):1415–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant from Chinese Academy of Medical Sciences (CAMS) Initiative for Innovative Medicine (No.2019-I2M-1–005, 2020-I2M-2–011).

Author information

Authors and Affiliations

Authors

Contributions

GS and XS designed and supervised the whole project. BZ, XZ, CZ, and NL conducted the experiments and BZ processed the data, BZ wrote the paper and ZD helped to revised it. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guibo Sun or Xiaobo Sun.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Guest Editors: Meng Deng and Shihuan Kuang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2532 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Zhang, X., Zhang, C. et al. Berberine Improves the Protective Effects of Metformin on Diabetic Nephropathy in db/db Mice through Trib1-dependent Inhibiting Inflammation. Pharm Res 38, 1807–1820 (2021). https://doi.org/10.1007/s11095-021-03104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03104-x

KEY WORDS

Navigation