CDC. Understanding the epidemic. https://www.cdc.gov/drugoverdose/epidemic/index.html.
NIH/NIDA. Overdose death rates. https://www.drugabuse.gov/drug-topics/trends-statistics/overdose-death-rates.
CDC. Overdose deaths accelerating during COVID-19. https://www.cdc.gov/media/releases/2020/p1218-overdose-deaths-covid-19.html.
CDC. Provisional drug overdose death counts. https://www.cdc.gov/nchs/nvss/vsrr/drug-overdose-data.htm.
Ahmad FB, Cisewski JA, Miniño A, Anderson RN. Provisional mortality data - United States, 2020. https://www.cdc.gov/mmwr/volumes/70/wr/mm7014e1.htm?s_cid=mm7014e1_w.
Park K, Otte A. Prevention of opioid abuse and treatment of opioid addiction: current status and future possibilities. Ann Rev Biomed Eng. 2019;21:61–84.
CAS
Article
Google Scholar
FDA/CDER. OxyContin NDA 22–272. Division director summary review for regulatory action https://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/022272s000SumR.pdf.
FDA/CDER. Hysingla NDA 206–627. Summary review for regulatory action https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/206627Orig1s000SumR.pdf.
Embeda. Highlights of prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/022321s022lbl.pdf.
Barnett V, Twycross R, Mihalyo M, Wilcock A. Opioid antagonists. J Pain Symptom Manag. 2014;47(2):341–52.
Article
Google Scholar
Kaleo. EVZIO® (naloxone hydrochloride injection) Auto-Injector for intramuscular or subcutaneous use https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/209862lbl.pdf.
FDA. Vivitrol® (Naltrexone for extended-release injectable suspension) Intramuscular. https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021897s015lbl.pdf.
Jauncey ME, Nielsen S. Community use of naloxone for opioid overdose. Aust Prescr. 2017;40(4):137–40.
Article
Google Scholar
Tandberg D, Abercrombie D. Treatment of heroin overdose with endotracheal naloxone. Ann Emerg Med. 1982;11(8):443–5.
CAS
Article
Google Scholar
Weber JM, Tataris KL, Hoffman JD, Aks SE, Mycyk MB. Can nebulized naloxone be used safely and effectively by emergency medical services for suspected opioid overdose? Prehospital Emergency Care. 2012;16(2):289–92.
Article
Google Scholar
NIH/NIDA. Opioid overdose reversal with naloxone (Narcan, Evzio). https://www.drugabuse.gov/drug-topics/opioids/opioid-overdose-reversal-naloxone-narcan-evzio.
Rzasa Lynn R, Galinkin J. Naloxone dosage for opioid reversal: current evidence and clinical implications. Therapeutic Advances in Drug Safety. 2018;9(1):63–88.
CAS
Article
Google Scholar
Sharifi F, Otte A, Yoon G, Park K. Continuous in-line homogenization process for scale-up production of naltrexone-loaded PLGA microparticles. J Control Release. 2020;325:347–58.
CAS
Article
Google Scholar
Benéitez MC, Espada JI, D. Fernandes D, de la Ossa DHP, Gil-Alegre ME. Influence of surfactant on the characteristics of W1/O/W2-microparticles. J Surfactant Deterg. 2014;17:11–8.
Article
Google Scholar
Kassick AJ, Allen HN, Yerneni SS, Pary F, Kovaliov M, Cheng C, et al. Covalent poly(lactic acid) nanoparticles for the sustained delivery of naloxone. ACS Appl Bio Mater. 2019;2(8):3418–28.
CAS
Article
Google Scholar
Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (plga) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–97.
CAS
Article
Google Scholar
Casalini T, Rossi F, Castrovinci A, Perale G. A Perspective on polylactic acid-based polymers use for nanoparticles synthesis and application. Front Bioeng Biotechnol. 2019;7(259 (16 pages)).
Andhariya JV, Choi S, Wang Y, Zou Y, Burgess DJ, Shen J. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres. Int J Pharrm. 2017;520(1):79–85.
CAS
Article
Google Scholar
Park K, Otte A, Sharifi F, Garner J, Skidmore S, Park H, et al. Potential roles of the glass transition temperature of PLGA microparticles in drug release kinetics. Mol Pharm. 2021;18(1):18–32.
CAS
Article
Google Scholar
Cassell RJ, Sharma KK, Su H, Cummins BR, Cui H, Mores KL, et al. The meta-position of phe(4) in leu-enkephalin regulates potency, selectivity, functional activity, and signaling bias at the delta and mu opioid receptors. Molecules. 2019;24(24):4542.
CAS
Article
Google Scholar
Park K, Otte A, Sharifi F, Garner J, Skidmore S, Park H, et al. Formulation composition, manufacturing process, and characterization of poly(lactide-co-glycolide) microparticles. J Control Release. 2021;329:1150–61.
CAS
Article
Google Scholar
Cun D, Cui F, Yang L, Yang M, Yu Y, Yang R. Characterization and release mechanism of melittin entrapped poly (lactic acid-co-glycolic acid) microspheres. J Drug Del Sci Tech. 2008;18(4):267–72.
CAS
Article
Google Scholar
Brunner A, Mäder K, Göpferich A. pH and osmotic pressure inside biodegradable microspheres during erosion1. Pharm Res. 1999;16(6):847–53.
CAS
Article
Google Scholar
Gu B, Sun X, Papadimitrakopoulos F, Burgess DJ. Seeing is believing, PLGA microsphere degradation revealed in PLGA microsphere/PVA hydrogel composites. J Control Release. 2016;228:170–8.
CAS
Article
Google Scholar
Mylonaki I, Allémann E, Delie F, Jordan O. Imaging the porous structure in the core of degrading PLGA microparticles: the effect of molecular weight. J Control Release. 2018;286:231–9.
CAS
Article
Google Scholar
Kwon SJ, Park J-H, Park J-G. Wrinkling of a sol-gel-derived thin film. Phys Rev E. 2005;71(1):011604.
Article
Google Scholar
Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res. 2004;27(1):1–12.
CAS
Article
Google Scholar
Otte A, Sharifi F, Park K. Interfacial tension effects on the properties of PLGA microparticles. Colloids Surf B. 2020;196:111300.
CAS
Article
Google Scholar
Bile J, Bolzinger M-A, Vigne C, Boyron O, Valour J-P, Fessi H, et al. The parameters influencing the morphology of poly(ɛ-caprolactone) microspheres and the resulting release of encapsulated drugs. Int J Pharrm. 2015;494(1):152–66.
CAS
Article
Google Scholar
Lactel. Poly(DL-lactide-co-glycolide). https://www.absorbables.com/products/plga/.
Mu L, Feng S-S. PLGA/TPGS nanoparticles for controlled release of paclitaxel: effects of the emulsifier and drug loading ratio. Pharm Res. 2003;20(11):1864–72.
CAS
Article
Google Scholar
Fu X, Ping Q, Gao Y. Effects of formulation factors on encapsulation efficiency and release behaviour in vitro of huperzine A-PLGA microspheres. J Microencapsul. 2005;22(7):705–14.
CAS
Article
Google Scholar
Song X, Zhao Y, Wu W, Bi Y, Cai Z, Chen Q, et al. PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int J Pharm. 2008;350(1):320–9.
CAS
Article
Google Scholar
Qi F, Wu J, Fan Q, He F, Tian G, Yang T, et al. Preparation of uniform-sized exenatide-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency and bio-stability. Colloids Surf B. 2013;112:492–8.
CAS
Article
Google Scholar
Derman S. Caffeic acid phenethyl ester loaded plga nanoparticles: effect of various process parameters on reaction yield, encapsulation efficiency, and particle size. J Nanomater. 2015;2015:341848.
Article
Google Scholar
Song X, Zhao Y, Hou S, Xu F, Zhao R, He J, et al. Dual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiency. Eur J Pharm Biopharm. 2008;69(2):445–53.
CAS
Article
Google Scholar
Lactel. Biodegradation. https://www.absorbables.com/technical/biodegradation/.
Beck LR, Pope VZ, Flowers CE Jr, Cowsar DR, Tice TR, Lewis DU, et al. Poly (DL- Lactide-co-glycol ide)/Noreth isterone microcapsules: an injectable biodegradable contraceptive. Biol Reprod. 1983;28(1):186–95.
CAS
Article
Google Scholar
Su Z-X, Shi Y-N, Teng L-S, Li X, Wang L-x, Meng Q-F, et al. Biodegradable poly(D, L-lactide-co-glycolide) (PLGA) microspheres for sustained release of risperidone: zero-order release formulation. Pharm Develop Tech. 2011;16(4):377–84.
CAS
Article
Google Scholar
Sahana DK, Mittal G, Bhardwaj V, Kumar MNVR. PLGA nanoparticles for oral delivery of hydrophobic drugs: influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug. J Pharm Sci. 2008;97(4):1530–42.
CAS
Article
Google Scholar
Wang Q, Wang J, Lu Q, Detamore MS, Berkland C. Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects. Biomater. 2010;31(18):4980–6.
CAS
Article
Google Scholar
Jeon O, Kang S-W, Lim H-W, Hyung Chung J, Kim B-S. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(L-lactide-co-glycolide) nanospheres and fibrin gel. Biomater. 2006;27(8):1598–607.
CAS
Article
Google Scholar
Ranganath SH, Kee I, Krantz WB, Chow PK-H, Wang C-H. Hydrogel matrix entrapping PLGA-paclitaxel microspheres: drug delivery with near zero-order release and implantability advantages for malignant brain tumour chemotherapy. Pharm Res. 2009;26(9):2101–14.
CAS
Article
Google Scholar
Yang Z, Liu L, Su L, Wu X, Wang Y, Liu L, et al. Design of a zero-order sustained release PLGA microspheres for palonosetron hydrochloride with high encapsulation efficiency. Int J Pharrm. 2020;575:119006.
CAS
Article
Google Scholar
Schmid CL, Kennedy NM, Ross NC, Lovell KM, Yue Z, Morgenweck J, et al. Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell. 2017;171(5):1165–1175.e1113.
CAS
Article
Google Scholar
O’Hara T, Hayes S, Davis J. In vivo–in vitro correlation (IVIVC) modeling incorporating a convolution step. J Pharmacokinet Pharmacodyn. 2001;28:277–98.
Article
Google Scholar
D’Souza SS, DeLuca PP. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm Res. 2006;23(3):460–74.
Article
Google Scholar
Andhariya JV, Jog R, Shen J, Choi S, Wang Y, Zou Y, et al. In vitro-in vivo correlation of parenteral PLGA microspheres: effect of variable burst release. J Control Release. 2019;314:25–37.
CAS
Article
Google Scholar
Andhariya JV, Jog R, Shen J, Choi S, Wang Y, Zou Y, et al. Development of level a in vitro-in vivo correlations for peptide loaded PLGA microspheres. J Control Release. 2019;308:1–13.
CAS
Article
Google Scholar