Skip to main content

Advertisement

Log in

Glutathione-Conjugated Hydrogels: Flexible Vehicles for Personalized Treatment of Bacterial Infections

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Skin and soft tissue infections are increasingly prevalent and often complicated by potentially fatal therapeutic hurdles, such as poor drug perfusion and antibiotic resistance. Delivery vehicles capable of versatile loading may improve local bioavailability and minimize systemic toxicities yet such vehicles are not clinically available. Therefore, we aimed to expand upon the use of glutathione-conjugated poly(ethylene glycol) GSH-PEG hydrogels beyond protein delivery and evaluate the ability to deliver traditional therapeutic molecules.

Methods

PEG and GSH-PEG hydrogels were prepared using ultraviolet light (UV)-polymerization. Hydrogel loading and release of selected drug candidates was examined using UV-visible spectrometry. Therapeutic molecules and GST-fusion protein loading was examined using UV-visible and fluorescent spectrometry. Efficacy of released meropenem was assessed against meropenem-sensitive and -resistant P. aeruginosa in an agar diffusion bioassay.

Results

For all tested agents, GSH-PEG hydrogels demonstrated time-dependent loading whereas PEG hydrogels did not. GSH-PEG hydrogels released meropenem over 24 h. Co-loading of biologic and traditional therapeutics into a single vehicle was successfully demonstrated. Meropenem-loaded GSH-PEG hydrogels inhibited the growth of meropenem-sensitive and resistant P. aeruginosa isolates.

Conclusion

GSH ligands within GSH-PEG hydrogels allow loading and effective delivery of charged therapeutic agents, in addition to biologic therapeutics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Scheme 2

Similar content being viewed by others

Notes

  1. No correction for the GSH consumption of PEGDA end groups was used similar to previous publications (23).

Abbreviations

AR:

Antibiotic resistances

CAMHB:

Cation-adjusted Mueller-Hinton cation-adjusted Mueller-Hinton broth

C d :

Donor cell drug concentration

CDC:

Center for Disease Control and Prevention

CLSI:

Clinical and Laboratory Standards Institute

C n :

Characteristic ratio

D i :

Diffusion coefficient

GSH:

Glutathione

GSH-PEG:

Glutathione-conjugated polyethylene glycol

GST:

Glutathione-S-transferase

I :

Ionic strength

IMF:

Intermolecular force

j ss :

Flux of drug through membrane at steady state

K i :

Partition coefficient

l :

Bond length along the polymer backbone

L :

Membrane thickness

LMS:

Low molecular weight salt

m 0 :

Mass of the dried hydrogel

M c :

Molecular weight between crosslinks

m d,a :

Mass of dry hydrogel in air

m i :

Initial relaxed hydrogel mass

MIC:

Minimum inhibitory concertation

M n :

Number average molecular weight

M r :

Molecular weight of the repeating unit

m r,b :

Mass of relaxed hydrogel in butanol

MRSA:

methicillin-resistant Staphylococcus aureus

m s,b :

Mass of swollen hydrogel in butanol

m t :

Swollen mass at a given time

p :

Statistical p value

PBS:

Phosphate buffered saline

PEG:

Poly(ethylene glycol)

PEGDA:

Poly(ethylene glycol) diacrylate

P i :

Permeability coefficient

q :

Hydrogel mass swelling ratio

SSTI:

Skin and soft tissue infection

t lag :

Lag time to steady state conditions

UV:

Ultraviolet

v :

Specific volume of the polymer

V1 :

Molar volume of the swelling agent, water

Δm:

Change in mass (%)

ν2,r :

Polymer volume fraction in the relaxed state

ν2,s :

Polymer volume fraction in the swollen state

ξ:

Mesh size of the hydrogel

ρb :

Density of 1-butanol

ρp :

Density of polymer

χ:

Flory polymer-solvent interaction factor

References

  1. Tun K, Shurko JF, Ryan L, Lee GC. Age-based health and economic burden of skin and soft tissue infections in the United States, 2000 and 2012. PLoS One. 2018;13(11):e0206893–3.

  2. Kaye KS, Petty LA, Shorr AF, Zilberberg MD. Current epidemiology, etiology, and burden of acute skin infections in the United States. Clin Infect Dis. 2019;68(Suppl 3):S193–9.

    Article  Google Scholar 

  3. Ioannou P, Tsagkaraki E, Athanasaki A, Tsioutis C, Gikas A. Gram-negative Bacteria as emerging pathogens affecting mortality in skin and soft tissue infections. Hippokratia. 2018;22(1):23–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage pseudomonas aeruginosa infections. Drugs Context. 2018;7:212527–7.

  5. Leong HN, Kurup A, Tan MY, Kwa ALH, Liau KH, Wilcox MH. Management of Complicated Skin and Soft Tissue Infections with a special focus on the role of newer antibiotics. Infect Drug Resist. 2018;11:1959–74.

    Article  CAS  Google Scholar 

  6. Stein GE, Wells EM. The importance of tissue penetration in achieving successful antimicrobial treatment of nosocomial pneumonia and complicated skin and soft-tissue infections caused by methicillin-resistant staphylococcus aureus: vancomycin and linezolid. Curr Med Res Opin. 2010;26(3):571–88.

    Article  CAS  Google Scholar 

  7. Fish DN. Meropenem in the treatment of complicated skin and soft tissue infections. Ther Clin Risk Manag. 2006;2(4):401–15.

    Article  CAS  Google Scholar 

  8. Llor C, Bjerrum L. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf. 2014;5(6):229–41.

    Article  Google Scholar 

  9. Rand BC, Penn-Barwell JG, Wenke JC. Combined local and systemic antibiotic delivery improves eradication of wound contamination: an animal experimental model of contaminated fracture. Bone Joint J. 2015;97-B(10):1423–7.

    Article  CAS  Google Scholar 

  10. Siddiqui AR, Bernstein JM. Chronic wound infection: facts and controversies. Clin Dermatol. 2010;28(5):519–26.

    Article  Google Scholar 

  11. Ki V, Rotstein C. Bacterial Skin and Soft Tissue Infections in Adults: A Review of Their Epidemiology, Pathogenesis, Diagnosis, Treatment and Site of Care. The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale. 2008;19(2):173–184.

  12. Yao K, Bae L, Yew WP. Post-operative wound management. Aust Fam Physician. 2013;42(12):867–70.

    PubMed  Google Scholar 

  13. Murphy PS, Evans GRD. Advances in wound healing: a review of current wound healing products. Plast Surg Int. 2012;2012:190436–6.

  14. Lin CC, Anseth KS. Peg hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res. 2009;26(3):631–43.

    Article  CAS  Google Scholar 

  15. Li J, Mooney DJ. Designing Hydrogels for Controlled Drug Delivery. Nature Reviews Materials. 2016;1(12):16071.

    Article  CAS  Google Scholar 

  16. Gupta B, Agarwal R, Alam MS. Hydrogels for wound healing applications. In: Rimmer S, editor. Biomedical Hydrogels: Woodhead Publishing; 2011. p. 184–227.

  17. Chen SL, Fu RH, Liao SF, Liu SP, Lin SZ, Wang YC. A peg-based hydrogel for effective wound care management. Cell Transplant. 2018;27(2):275–84.

    Article  Google Scholar 

  18. Andreopoulos FM, Persaud I. Delivery of basic fibroblast growth factor (Bfgf) from Photoresponsive hydrogel scaffolds. Biomaterials. 2006;27(11):2468–76.

    Article  CAS  Google Scholar 

  19. Liu SQ, Yang C, Huang Y, Ding X, Li Y, Fan WM, et al. Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly(ethylene glycol) via Michael addition. Adv Mater. 2012;24(48):6484–9.

  20. Buwalda SJ, Vermonden T, Hennink WE. Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules. 2017;18(2):316–30.

    Article  CAS  Google Scholar 

  21. Lipsky BA, Napolitano LM, Moran GJ, Vo L, Nicholson S, Kim M. Inappropriate initial antibiotic treatment for complicated skin and soft tissue infections in hospitalized patients: incidence and associated factors. Diagn Microbiol Infect Dis. 2014;79(2):273–9.

    Article  CAS  Google Scholar 

  22. Yang K, Han Q, Chen B, Zheng Y, Zhang K, Li Q, et al. Antimicrobial hydrogels: promising materials for medical application. Int J Nanomedicine. 2018;13:2217–63.

  23. Buhrman JS, Rayahin JE, Köllmer M, Gemeinhart RA. In-house preparation of hydrogels for batch affinity purification of glutathione S-transferase tagged recombinant proteins. BMC Biotechnol. 2012;12:63.

    Article  CAS  Google Scholar 

  24. Rayahin JE, Buhrman JS, Gemeinhart RA. Melittin-glutathione S-transferase fusion protein exhibits anti-inflammatory properties and minimal toxicity. Eur J Pharm Sci. 2014;65:112–21.

    Article  CAS  Google Scholar 

  25. Paka GD, Ramassamy C. Optimization of curcumin-loaded peg-Plga nanoparticles by Gsh functionalization: investigation of the internalization pathway in neuronal cells. Mol Pharm. 2017;14(1):93–106.

    Article  CAS  Google Scholar 

  26. Sen S, Bonfio C, Mansy SS, Cowan JA. Investigation of glutathione-derived electrostatic and hydrogen-bonding interactions and their role in defining Grx5 [2fe-2s] cluster optical spectra and transfer chemistry. J Biol Inorg Chem. 2018;23(2):241–52.

    Article  CAS  Google Scholar 

  27. Buhrman JS, Cook LC, Rayahin JE, Federle MJ, Gemeinhart RA. Proteolytically activated anti-bacterial hydrogel microspheres. J Control Release. 2013;171(3):288–95.

    Article  CAS  Google Scholar 

  28. Lutgring JD, Machado MJ, Benahmed FH, Conville P, Shawar RM, Patel J, Brown AC. Fda-Cdc Antimicrobial Resistance Isolate Bank: A Publicly Available Resource to Support Research, Development, and Regulatory Requirements. J Clin Microbiol. 2018;56(2).

  29. Buhrman JS. Recombinant Protein Immobilization and Controlled-Release Mediated by a Non-Covalent Protein Anchor. Ph.D. Dissertation in Biopharmaceutical Sciences from the University of Illinois at Chicago (2015).

  30. Ross AE, Tang MY, Gemeinhart RA. Effects of molecular weight and loading on matrix Metalloproteinase-2 mediated release from poly(ethylene glycol) Diacrylate hydrogels. AAPS J. 2012;14(3):482–90.

    Article  CAS  Google Scholar 

  31. Gustafson CT, Boakye-Agyeman F, Brinkman CL, Reid JM, Patel R, Bajzer Z, et al. Controlled delivery of vancomycin via charged hydrogels. PLoS One. 2016;11(1):e0146401–1.

  32. Mendez A, Chagastelles P, Palma E, Nardi N, Schapoval E. Thermal and alkaline stability of Meropenem: degradation products and cytotoxicity. Int J Pharm. 2008;350(1–2):95–102.

    Article  CAS  Google Scholar 

  33. Bergman P, Linde C, Putsep K, Pohanka A, Normark S, Henriques-Normark B, et al. Studies on the antibacterial effects of statins--in vitro and in vivo. PLoS One. 2011;6(8):e24394.

  34. Grip O, Janciauskiene S, Lindgren S. Pravastatin Down-regulates inflammatory mediators in human monocytes in vitro. Eur J Pharmacol. 2000;410(1):83–92.

    Article  CAS  Google Scholar 

  35. Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing [S]. Clsi Supplement M100. In.: Clinical and Laboratory Standards Institute Wayne, PA; 2018.

  36. O'Donnell K, Boyd A, Meenan BJ. Controlling Fluid Diffusion and Release through Mixed-Molecular-Weight Poly(Ethylene) Glycol Diacrylate (Pegda) Hydrogels. Materials (Basel). 2019;12(20).

  37. Baietto L, Corcione S, Pacini G, Perri GD, D'Avolio A, De Rosa FG. A 30-years review on pharmacokinetics of antibiotics: is the right time for pharmacogenetics? Curr Drug Metab. 2014;15(6):581–98.

    Article  CAS  Google Scholar 

  38. Xu H, Paxton JW, Wu Z. Enhanced Ph-responsiveness, cellular trafficking, cytotoxicity and long-circulation of Pegylated liposomes with post-insertion technique using gemcitabine as a model drug. Pharm Res. 2015;32(7):2428–38.

    Article  CAS  Google Scholar 

  39. Duan JZ, Riviere K, Marroum P. In vivo bioequivalence and in vitro similarity factor (F2) for dissolution profile comparisons of extended release formulations: how and when do they match? Pharm Res. 2011;28(5):1144–56.

    Article  CAS  Google Scholar 

  40. Sumon ZE, Berenson CS, Sellick JA, Bulman ZP, Tsuji BT, Mergenhagen KA. Successful cure of Daptomycin-non-susceptible, vancomycin-intermediate staphylococcus aureus prosthetic aortic valve endocarditis directed by synergistic in vitro time-kill study. Infect Dis (Lond). 2019;51(4):287–92.

    Article  CAS  Google Scholar 

  41. Wenzler E, Santarossa M, Meyer KA, Harrington AT, Reid GE, Clark NM, Albarillo FS, Bulman ZP. In Vitro Pharmacodynamic Analyses Help Guide the Treatment of Multidrug-Resistant Enterococcus faecium and Carbapenem-Resistant Enterobacter cloacae Bacteremia in a Liver Transplant Patient. Open Forum Infect Dis. 2020;7(1):ofz545.

  42. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134(3):489–92.

    Article  CAS  Google Scholar 

  43. Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med. 2009;30(1–2):1–12.

    Article  CAS  Google Scholar 

  44. Zarembinski TI, Doty NJ, Erickson IE, Srinivas R, Wirostko BM, Tew WP. Thiolated Hyaluronan-based hydrogels crosslinked using oxidized glutathione: an injectable matrix designed for ophthalmic applications. Acta Biomater. 2014;10(1):94–103.

    Article  CAS  Google Scholar 

  45. Li J, Shu Y, Hao T, Wang Y, Qian Y, Duan C, et al. A chitosan-glutathione based injectable hydrogel for suppression of oxidative stress damage in cardiomyocytes. Biomaterials. 2013;34(36):9071–81.

  46. Bertoni S, Albertini B, Facchini C, Prata C, Passerini N. Glutathione-Loaded Solid Lipid Microparticles as Innovative Delivery System for Oral Antioxidant Therapy. Pharmaceutics. 2019;11(8).

  47. Amsden B. Solute diffusion within hydrogels. Mechanisms and Models Macromolecules. 1998;31(23):8382–95.

    Article  CAS  Google Scholar 

  48. Peppas NA, Reinhart CT. Solute diffusion in swollen membranes. Part I. a new theory. J Membr Sci. 1983;15(3):275–87.

    Article  CAS  Google Scholar 

  49. Raghuwanshi VS, Garnier G. Characterisation of hydrogels: linking the Nano to the microscale. Adv Colloid Interf Sci. 2019;274:102044.

    Article  CAS  Google Scholar 

  50. Kozlowska M, Goclon J, Rodziewicz P. Intramolecular hydrogen bonds in low-molecular-weight polyethylene glycol. Chemphyschem. 2016;17(8):1143–53.

    Article  CAS  Google Scholar 

  51. Krezel A, Bal W. Structure-function relationships in glutathione and its analogues. Org Biomol Chem. 2003;1(22):3885–90.

    Article  CAS  Google Scholar 

  52. Lyon RP, Atkins WM. Self-assembly and gelation of oxidized glutathione in organic solvents. J Am Chem Soc. 2001;123(19):4408–13.

    Article  CAS  Google Scholar 

  53. Plaut BS, Davies DJ, Meakin BJ, Richardson NE. The mechanism of interaction between chlorhexidine Digluconate and poly(2-hydroxyethyl methacrylate). J Pharm Pharmacol. 1981;33(2):82–8.

    CAS  PubMed  Google Scholar 

  54. Gehrke SH, Fisher JP, Palasis M, Lund ME. Factors determining hydrogel permeability. Ann N Y Acad Sci. 1997;831:179–207.

    Article  CAS  Google Scholar 

  55. Ye F, Baldursdottir S, Hvidt S, Jensen H, Larsen SW, Yaghmur A, et al. Role of electrostatic interactions on the transport of Druglike molecules in hydrogel-based articular cartilage mimics: implications for drug delivery. Mol Pharm. 2016;13(3):819–28.

  56. Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep. 2015;93:1–49.

    Article  Google Scholar 

  57. Gao M, Gawel K, Stokke BT. Polyelectrolyte and Antipolyelectrolyte effects in swelling of Polyampholyte and Polyzwitterionic charge balanced and charge offset hydrogels. Eur Polym J. 2014;53:65–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgements and Disclosures

The authors would like to acknowledge and thank Alec C. Thompson for his help in preparing hydrogels, Shitalben R. Patel for her help conducting the microbiology experiments, and Dr. Zackery P. Bulman for generous sharing of instrumentation and feedback. The authors also thank Catherine F. Dial and Timothy D. Langridge for their support and feedback during the development of this work. Karol Sokolowski: Methodology; Conceptualization; Investigation; Formal Analysis; Writing-Original Draft. Hai M. Pham: Investigation; Formal Analysis; Writing-Review & Editing. Eric Wenzler: Methodology; Formal Analysis; Supervision; Writing-Review & Editing. Richard Gemeinhart: Methodology; Conceptualization; Formal Analysis; Supervision; Writing-Review & Editing; Funding Acquisition. This work was supported in part by the W.C. and May Preble Deiss Fund for Biomedical Research (to K.S.). This investigation was conducted in a facility constructed with support from Research Facilities Improvement Program Grant Number C06 RR15482 from the National Center for Research Resources, NIH. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The datasets generated during and/or analyzed during the current study are available from the corresponding authors on reasonable request. E.W. serves on the speaker’s bureau for Melinta Therapeutics, Astellas Pharma, and Allergan Plc., and on the advisory board for GenMark Diagnostics and Shionogi. All other authors certify no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eric Wenzler or Richard A. Gemeinhart.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Supplemental chemical schema and results include hydrogel swell behavior in isotonic PBS, agar-well diffusion data against carbapenem-susceptible P. aeruginosa, representative images of hydrogels, and physical characteristics of slab-cut hydrogels. Supplementary data to this article can be found online at TBD. (PDF 1128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolowski, K., Pham, H.M., Wenzler, E. et al. Glutathione-Conjugated Hydrogels: Flexible Vehicles for Personalized Treatment of Bacterial Infections. Pharm Res 38, 1247–1261 (2021). https://doi.org/10.1007/s11095-021-03057-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03057-1

Key Words

Navigation