Skip to main content

Advertisement

Log in

Surfactant-Free Glibenclamide Nanoparticles: Formulation, Characterization and Evaluation of Interactions with Biological Barriers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this work was to formulate and characterize surfactant-free glibenclamide nanoparticles using Eudragit RLPO and polyethylene glycol as sole stabilizer.

Methods

Glibenclamide nanoparticles were obtained by nanoprecipitation and evaluated in terms of drug content, encapsulation efficiency, apparent saturation solubility, drug release profile, solid state and storage stability. The influence of different stirring speed on the particle size, size distribution and zeta potential of the nanoparticles was investigated. The nanoparticle biocompatibility and permeability were analyzed in vitro on Caco-2 cell line (clone HTB-37) and its interaction with mucin was also investigated.

Results

It was found that increasing the molecular weight of polyethylene glycol from 400 to 6000 decreased drug encapsulation, whereas the aqueous solubility and dissolution rate of the drug increased. Particle size of the nanoformulations, with and without polyethylene glycol, were between 140 and 460 nm. Stability studies confirmed that glibenclamide nanoparticles were stable, in terms of particle size, after 120 days at 4°C. In vitro studies indicated minimal interactions of glibenclamide nanoparticles and mucin glycoproteins suggesting favorable properties to address the intestinal mucus barrier. Cell viability studies confirmed the safety profile of these nanoparticles and showed an increased permeation through epithelial cells.

Conclusion

Taking into consideration these findings, polyethylene glycol is a useful polymer for stabilizing these surfactant-free glibenclamide nanoparticles and represent a promising alternative to improve the treatment of non-insulin dependent diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Coppack S, Lant A, McIntosh C, Rodgers A. Pharmacokinetic and pharmacodynamic studies of glibenclamide in non- insulin dependent diabetes mellitus. Br J Clin Pharmacol. 1990;29:673–84. https://doi.org/10.1111/j.1365-2125.1990.tb03688.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lebovitz HE. Oral antidiabetic agents: 2004. Med Clin North Am. 2004;88:847–63. https://doi.org/10.1016/j.mcna.2004.05.002.

    Article  CAS  PubMed  Google Scholar 

  3. Yu LX, Amidon GL, Polli JE, Zhao H, Mehta MU, Conner DP, et al. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm Res. 2002;19:921–5. https://doi.org/10.1023/a:1016473601633.

    Article  CAS  PubMed  Google Scholar 

  4. Karttunen P, Uusitupa M, Nykänen S, Robinson JD, Sipilä J. The pharmacokinetics of glibenclamide: a single dose comparison of four preparations in human volunteers. Int J Clin Pharmacol Ther Toxicol. 1985;23:642–6.

    CAS  PubMed  Google Scholar 

  5. Neugebauer G, Betzien G, Hrstka V, Kaufmann B, von Möllendorff E, Abshagen U. Absolute bioavailability and bioequivalence of glibenclamide (semi-Euglucon N). Int J Clin Pharmacol Ther Toxicol. 1985;23:453–60.

    CAS  PubMed  Google Scholar 

  6. Chauhan B, Shimpi S, Paradkar A. Preparation and evaluation of glibenclamide-polyglycolized glycerides solid dispersions with silicon dioxide by spray drying technique. Eur J Pharm Sci. 2005;26:219–30. https://doi.org/10.1016/j.ejps.2005.06.005.

    Article  CAS  PubMed  Google Scholar 

  7. Dastmalchi S, Garjani A, Maleki N, Sheikhee G, Baghchevan V, Jafari-Azad P, et al. Enhancing dissolution, serum concentrations and hypoglycemic effect of glibenclamide using solvent deposition technique. J Pharm Pharm Sci. 2005;8:175–81.

    CAS  PubMed  Google Scholar 

  8. Lucio D, Irache JM, Font M, Martínez-Ohárriz MC. Supramolecular structure of glibenclamide and β-cyclodextrins complexes. Int J Pharm. 2007;530:377–86. https://doi.org/10.1016/j.ijpharm.2017.08.002.

    Article  CAS  Google Scholar 

  9. Salem HF, Elbary AAA, Maher ME. In vitro and in vivo evaluation of glibenclamide using surface solid dispersion (SSD) approach. Br J Pharmacol Toxicol. 2011;2:51–62. https://doi.org/10.1081/ddc-120037491.

    Article  Google Scholar 

  10. Seedher N, Kanojia M. Co-solvent solubilization of some poorly-soluble antidiabetic drugs Solubilization antidiabetic drugs. Pharm Dev Technol. 2009;14:185–92. https://doi.org/10.1080/10837450802498894.

    Article  CAS  PubMed  Google Scholar 

  11. Klein S, Wempe MF, Zoeller T, Buchanan NL, Lambert JL, Ramsey MG, et al. Improving glyburide solubility and dissolution by complexation with hydroxybutenyl-β-cyclodextrin. J Pharm Pharmacol. 2009;61:23–30. https://doi.org/10.1211/jpp.61.01.0004.

    Article  CAS  PubMed  Google Scholar 

  12. Lucio D, Martínez-Ohárriz MC, González-Navarro CJ, Navarro-Herrera D, González-Gaitano G, Radulescu A, et al. Coencapsulation of cyclodextrins into poly(anhydride) nanoparticles to improve the oral administration of glibenclamide. A screening on C. elegans. Colloids Surf B: Biointerfaces. 2018;163:64–72. https://doi.org/10.1016/j.colsurfb.2017.12.038.

    Article  CAS  PubMed  Google Scholar 

  13. Savolainen J, Järvinen K, Taipale H, Jarho P, Loftsson T, Järvinen T. Co-administration of a water-soluble polymer increases the usefulness of cyclodextrins in solid oral dosage forms. Pharm Res. 1998;15:1696–701. https://doi.org/10.1023/a:1011900527021.

    Article  CAS  PubMed  Google Scholar 

  14. Furlanetto S, Cirri M, Piepel G, Mennini N, Mura P. Mixture experiment methods in the development and optimization of microemulsion formulations. J Pharm Biomed Anal. 2011;55:610–7. https://doi.org/10.1016/j.jpba.2011.01.008.

    Article  CAS  PubMed  Google Scholar 

  15. Albertini B, Di Sabatino M, Passerini MC, N. Formulation of spray congealed microparticles with self-emulsifying ability for enhanced glibenclamide dissolution performance. J Microencapsul. 2015;32:181–92. https://doi.org/10.3109/02652048.2014.985341.

    Article  CAS  PubMed  Google Scholar 

  16. Sajeev Kumar B, Saraswathi R, Venkates Kumar K, Jha SK, Venkates DP, Dhanaraj SA, et al. Development and characterization of lecithin stabilized glibenclamide nanocrystals for enhanced solubility and drug delivery. Drug Deliv. 2014;21:173–84. https://doi.org/10.3109/10717544.2013.840690.

    Article  CAS  PubMed  Google Scholar 

  17. Shah SR, Parikh RH, Chavda JR, Sheth NR. Glibenclamide nanocrystals for bioavailability enhancement: formulation design, process optimization, and pharmacodynamic evaluation. J Pharm Innov. 2014;9:227–37. https://doi.org/10.1007/s12247-014-9189-y.

    Article  Google Scholar 

  18. Ali HSM, Hanafy AF. Glibenclamide nanocrystals in a biodegradable chitosan patch for transdermal delivery: engineering, formulation, and evaluation. J Pharm Sci. 2017;106:402–10. https://doi.org/10.1016/j.xphs.2016.10.010.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Yang W, Fu Q, Guo Z, Sun B, Liu W, et al. The role of particle size of glyburide crystals in improving its oral absorption. Drug Deliv TranslRes. 2017;7:428–38. https://doi.org/10.1007/s13346-017-0378-3.

    Article  CAS  Google Scholar 

  20. Behera A, Sahoo SK. Preparation and evaluation of glibenclamide-loaded biodegradable nanoparticles. Trop J Pharm Res. 2012;1:345–50. https://doi.org/10.4314/tjpr.v11i3.2.

    Article  CAS  Google Scholar 

  21. Aslam M, Aqil M, Ahad A, Najmi AK, Sultana Y, Ali A. Application of box–Behnken design for preparation of glibenclamide loaded lipid based nanoparticles: optimization, in vitro skin permeation, drug release and in vivo pharmacokinetic study. J Mol Liq. 2016;219:897–908. https://doi.org/10.1016/j.molliq.2016.03.069.

    Article  CAS  Google Scholar 

  22. Elbahwy IA, Ibrahim HM, Ismael HR, Kasem AA. Enhancing bioavailability and controlling the release of glibenclamide from optimized solid lipid nanoparticles. J Drug Deliv Sci Technol. 2017;38:78–89. https://doi.org/10.1016/j.jddst.2017.02.001.

    Article  CAS  Google Scholar 

  23. Gonçalves LMD, Maestrelli F, Mannelli LC, Ghelardini C, Almeida AJ, Mura P. Development of solid lipid nanoparticles as carriers for improving oral bioavailability of glibenclamide. Eur J Pharm Biopharm. 2016;102:41–50. https://doi.org/10.1016/j.ejpb.2016.02.01230.

    Article  PubMed  Google Scholar 

  24. Čerpnjak K, Zvonar A, Gašperlin M, Vrečer F. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Acta Pharma. 2013;63:427–45. https://doi.org/10.2478/acph-2013-0040.

    Article  CAS  Google Scholar 

  25. Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery - an overview. Acta Pharm Sin B. 2011;1:208–19. https://doi.org/10.1016/j.apsb.2011.09.002.

    Article  CAS  Google Scholar 

  26. Whitehead K, Karr N, Mitragotri S. Safe and effective permeation enhancers for oral drug delivery. Pharm Res. 2008;25:1782–8. https://doi.org/10.1007/s11095-007-9488-9.

    Article  CAS  PubMed  Google Scholar 

  27. Shegokar ALM, Pinheiro RR, Araújo JF, de Azevedo DAA, Peixoto RM, Andrioli A, et al. Sodium dodecyl sulfate as a viral inactivator and future perspectives in the control of small ruminant lentiviruses. Arq Inst Biol. 2019;86. https://doi.org/10.1590/1808-1657000752018.

  28. Seremeta KP, Höcht C, Taira C, Cortez Tornello PR, Abraham GA, Sosnik A. Didanosine-loaded poly(epsilon-caprolactone) microparticles by a coaxial electrohydrodynamic atomization (CEHDA) technique. J Mater Chem B. 2015;3:102–11. https://doi.org/10.1039/C4TB00664J.

    Article  CAS  PubMed  Google Scholar 

  29. Dora CP, Singh S, Kumarm S, Datusalia AK, Deep A. Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta Pol Pharm. 2010;67:283–90.

    CAS  PubMed  Google Scholar 

  30. Ho D-K, Frisch S, Biehl A, Terriac E, De Rossi C, Schwarzkopf K, et al. Farnesylated glycol chitosan as a platform for drug delivery: synthesis, characterization, and investigation of mucus–particle interactions. Biomacromolecules. 2018;19:3489–501. https://doi.org/10.1021/acs.biomac.8b00795.

    Article  CAS  PubMed  Google Scholar 

  31. Sladowski D, Steer SJ, Clothier RH, Balls M. An improved MTT assay. J Immunol Methods. 1993;157:203–7. https://doi.org/10.1016/0022-1759(93)90088-O.

    Article  CAS  PubMed  Google Scholar 

  32. Mohd AB, Swathimutyam P, Rao AP, Shastri N, Diwan PV. Development and validation of Glibenclamide in Nanoemulsion formulation by using RP-HPLC. J Pharm Biomed Sci. 2011;08:1–5.

    Google Scholar 

  33. Lu Z, Fassihi R. Mechanistic approach to understanding the influence of USP apparatus I and II on dissolution kinetics of tablets with different operating release mechanisms. AAPS PharmSciTech. 2017;18:462–72. https://doi.org/10.1208/s12249-016-0535-x.

    Article  CAS  PubMed  Google Scholar 

  34. Ren T, Hu M, Cheng Y, Shek TL, Xiao M, Ho NJ, et al. Piperine-loaded nanoparticles with enhanced dissolution and oral bioavailability for epilepsy control. Eur J Pharm Sci. 2019;137:104988. https://doi.org/10.1016/j.ejps.2019.104988.

    Article  CAS  PubMed  Google Scholar 

  35. EMA. European medicines agency. ICH-stability test. New Drug Subst Prod. 2003:1–20. https://doi.org/10.1136/bmj.333.7574.873-a.

  36. Gandhi A, Jana S, Sen KK. In-vitro release of acyclovir loaded Eudragit RLPO® nanoparticles for sustained drug delivery. Int J Biol Macromol. 2014;67:478–82. https://doi.org/10.1016/j.ijbiomac.2014.04.019.

    Article  CAS  PubMed  Google Scholar 

  37. Forciniti D, Hall CK, Kula MR. Interfacial tension of polyethyleneglycol-dextran-water systems: influence of temperature and polymer molecular weight. J Biotechnol. 1990;16:279–96. https://doi.org/10.1016/0168-1656(90)90042-A.

    Article  CAS  Google Scholar 

  38. Verma S, Kumar S, Gokhale R, Burgess DJ. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Int J Pharm. 2011;406:145–52. https://doi.org/10.1016/j.ijpharm.2010.12.027.

    Article  CAS  PubMed  Google Scholar 

  39. D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13:1257–75. https://doi.org/10.1080/17425247.2016.1182485.

    Article  CAS  PubMed  Google Scholar 

  40. Abdellatif AAH, El-Telbany DFA, Zayed G, Al-Sawahli MM. Hydrogel containing PEG-coated fluconazole nanoparticles with enhanced solubility and antifungal activity. J Pharm Innov. 2019;14:112–22. https://doi.org/10.1007/s12247-018-9335-z.

    Article  Google Scholar 

  41. Chaurasia S, Patel RR, Vure P, Mishra B. Potential of cationic-polymeric nanoparticles for oral delivery of naringenin: in vitro and in vivo investigations. J Pharm Sci. 2018;107:706–16. https://doi.org/10.1016/j.xphs.2017.10.006.

    Article  CAS  PubMed  Google Scholar 

  42. Keßler S, Schmid F, Drese K. Modeling size controlled nanoparticle precipitation with the co-solvency method by spinodal decomposition. Soft Matter. 2016;12:7231–40. https://doi.org/10.1039/c6sm01198e.

    Article  PubMed  Google Scholar 

  43. Kumar BP, Chandiran IS, Jayaveera KN. Formulation development and evaluation of Glibenclamide loaded Eudragit RLPO microparticles. Int Curr Pharm J. 2013;2:196–201. https://doi.org/10.3329/icpj.v2i12.17016.

    Article  CAS  Google Scholar 

  44. Seremeta KP, Arrúa EC, Okulik NB, Salomon CJ. Development and characterization of benznidazole nano- and microparticles: a new tool for pediatric treatment of Chagas disease? Colloids Surf B: Biointerfaces. 2019;177:169–77. https://doi.org/10.1016/j.colsurfb.2019.01.039.

    Article  CAS  PubMed  Google Scholar 

  45. Deshpande RD, Gowda DV, Vegesna NSKV, Vaghela R, Kulkarni PK. The effect of nanonization on poorly water soluble glibenclamide using a liquid anti-solvent precipitation technique: aqueous solubility, in vitro and in vivo study. RSC Adv. 2015;5:81728–38. https://doi.org/10.1039/c5ra12678a.

    Article  Google Scholar 

  46. Yu L, Li C, Le Y, Chen JF, Zou H. Stabilized amorphous glibenclamide nanoparticles by high-gravity technique. Mater Chem Phys. 2011;130:361–6. https://doi.org/10.1016/j.matchemphys.2011.06.049.

    Article  CAS  Google Scholar 

  47. Bolourchian N, Mahboobian MM, Dadashzadeh S. The effect of PEG molecular weights on dissolution behavior of simvastatin in solid dispersions. Iran J Pharm Res. 2013;12:9–18. https://doi.org/10.22037/ijpr.2013.1267.

    Article  Google Scholar 

  48. Huang L, Nishinari K. Interaction between poly(ethylene glycol) and water as studied by differential scanning calorimetry. J Polym Sci Part B Polym Phys. 2013;39:496–506. https://doi.org/10.1002/1099-0488(20010301)39:5<496::AID-POLB1023>3.0.CO;2-H.

  49. Yadav SK, Mishra S, Mishra B. Eudragit-based nanosuspension of poorly water-soluble drug: formulation and in vitro–in vivo evaluation. AAPS PharmSciTech. 2012;13:1031–44. https://doi.org/10.1208/s12249-012-9833-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mohsen M, Yasaman M, Gholamhossein Y. Freeze-drying of pharmaceutical and nutraceutical nanoparticles: the effects of formulation and technique parameters on nanoparticles characteristics. J Pharm Sci. 2020;109:3235–47. https://doi.org/10.1016/j.xphs.2020.07.015.

    Article  CAS  Google Scholar 

  51. Schenk M, Mueller C. The mucosal immune system at the gastrointestinal barrier. Best Pract Res Clin Gastroenterol. 2008;22:391–409. https://doi.org/10.1016/j.bpg.2007.11.002.

    Article  CAS  PubMed  Google Scholar 

  52. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64:557–70. https://doi.org/10.1016/j.addr.2011.12.009.

    Article  CAS  PubMed  Google Scholar 

  53. Murgia X, Loretz B, Hartwig O, Hittinger M, Lehr CM. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv Drug Deliv Rev. 2018;124:82–97. https://doi.org/10.1016/j.addr.2017.10.009.

    Article  CAS  PubMed  Google Scholar 

  54. Schuster BS, Suk JS, Woodworth GF, Hanes J. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials. 2013;34:3439–46. https://doi.org/10.1016/j.biomaterials.2013.01.064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yasar H, Biehl A, De Rossi C, Koch M, Murgia X, Loretz B, et al. Kinetics of mRNA delivery and protein translation in dendritic cells using lipid-coated PLGA nanoparticles. J Nanobiotechnology. 2018;16:72. https://doi.org/10.1186/s12951-018-0401-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Strugari A, Stan M, Gharbia S, Hermenean A, Dinischiotu A. Characterization of nanoparticle intestinal transport using an in vitro co-culture model. Nanomaterials. 2018;9:5. https://doi.org/10.3390/nano901000556.

    Article  PubMed Central  Google Scholar 

  57. Zhang J, Field CJ, Vine D, Chen L. Intestinal uptake and transport of vitamin B12-loaded soy protein nanoparticles. Pharm Res. 2015;32:1288–303. https://doi.org/10.1007/s11095-014-1533-x Epub 2014 Oct 16.

    Article  CAS  PubMed  Google Scholar 

  58. Murgia X, Yasar H, Carvalho-Wodarz C, Loretz B, Gordon S, Schwarzkopf K, et al. Modelling the bronchial barrier in pulmonary drug delivery: a human bronchial epithelial cell line supplemented with human tracheal mucus. Eur J Pharm Biopharm. 2017;118:79–88. https://doi.org/10.1016/j.ejpb.2017.03.02033.

    Article  CAS  PubMed  Google Scholar 

  59. Bandi SP, Kumbhar YS, Venuganti VVK. Effect of particle size and surface charge of nanoparticles in penetration through intestinal mucus barrier. J Nanopart Res. 2020;22:62. https://doi.org/10.1007/s11051-020-04785-y.

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge financial support from the Universidad Nacional de Rosario (U.N.R., Rosario, Argentina), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) and Deutscher Akademischer Austauschdienst (DAAD, Deutschland). ECA thanks to CONICET for a Ph.D. fellowship. OH thanks to the EU Horizon 2020 research and innovation programme under grant Agreement N° 720905–2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xabier Murgia, Claudio J. Salomon or Claus-Michael Lehr.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Figure S1

(DOCX 83 kb)

Figure S2

(DOCX 51 kb)

Figure S3

(DOCX 22 kb)

Figure S4

(DOCX 57 kb)

Figure S5

(DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrua, E.C., Hartwig, O., Ho, DK. et al. Surfactant-Free Glibenclamide Nanoparticles: Formulation, Characterization and Evaluation of Interactions with Biological Barriers. Pharm Res 38, 1081–1092 (2021). https://doi.org/10.1007/s11095-021-03056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03056-2

Keywords

Navigation