Skip to main content

Parametric Optimization of 3D Printed Hydrogel-Based Cardiovascular Stent



This study aimed to develop personalized biodegradable stent (BDS) for the treatment of coronary heart disease. Three-dimensional (3D) printing technique has offered easy and fast fabrication of BDS with enhanced reproducibility and efficacy.


A variety of BDS were printed with 3 types of hydrogel (~5 ml) resources (10%w/v sodium alginate (SA), 10%w/v cysteine-sodium alginate (SA-CYS), and 10%w/v cysteine-sodium alginate with 0.4%w/v PLA-nanofibers (SA-CYS-NF)) dispersed from an 22G print head nozzle attached to the BD-syringe. The printability of hydrogels into 3D structures was examined based on such variables as hydrogel’s viscosity, printing distance, printing speed and the nozzle size.


It was demonstrated that alginate composition (10%w/v) offered BDS with sufficient viscosity that defined the thickness and swelling ratio of the stent struts. The thickness of the strut was found to be 338.7 ± 29.3 μm, 262.5 ± 14.7 μm and 237.1 ± 14.7 μm for stents made of SA, SA-CYS and SA-CYS-NF, respectively. SA-CYS-NF stent displayed the highest swelling ratio of 38.8 ± 2.9% at the initial 30 min, whereas stents made of SA and SA-CYS had 23.1 ± 2.4% and 22.0 ± 2.4%, respectively.


The printed stents had sufficient mechanical strength and were stable against pseudo-physiological wall shear stress. An addition of nanofibers to alginate hydrogel significantly enhanced the biodegradation rates of the stents. In vitro cell culture studies revealed that stents had no cytotoxic effects on human umbilical vein endothelial cells (HUVECs) and Raw 264.7 cells (i.e., Monocyte/macrophage-like cells), supporting that stents are biocompatible and can be explored for future clinical applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11





Becton, Dickinson and Company


Biodegradable stent


Coronary artery diseases


Drug-eluting stents


Discovery Hybrid Rheometer


Dulbecco’s modified eagle’s medium


1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide


Fetal bovine serum


Hydrochloric acid




human umbilical vein endothelial cells




In-stent restenosis


Linear viscoelastic region


Molecular weight cutoff


Sodium chloride


Phosphate-buffered saline


Propidium iodide


Poly-lactic acid


Sodium alginate


Cysteine-sodium alginate


Cysteine-sodium alginate with PLA nanofibers


Scanning electron microscopy


Standard Tessellation Language


Wall shear stress


  1. Chen MS, John JM, Chew DP, Lee DS, Ellis SG, Bhatt DL. Bare metal stent restenosis is not a benign clinical entity. Am Heart J. 2006;151:1260–4.

    PubMed  Google Scholar 

  2. Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med. 1994;331:496–501.

    CAS  PubMed  Google Scholar 

  3. Nakazawa G, Otsuka F, Nakano M, Vorpahl M, Yazdani SK, Ladich E, et al. The pathology of Neoatherosclerosis in human coronary implants. J Am Coll Cardiol. 2011;57:1314–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Veerubhotla K, Lee CH. Emerging trends in Nanocarbon-based cardiovascular applications. Adv Ther 2020;1900208.

  5. Reejhsinghani R, Lotfi AS. Prevention of stent thrombosis: challenges and solutions. Vasc Heal Risk Manag. 2015;11:93–106.

    Google Scholar 

  6. Tang J, Liu Y, Zhu B, Su Y, Zhu X. Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent. Appl Surf Sci. 2017;393:299–308.

    CAS  Google Scholar 

  7. Garg S, Serruys PW. Coronary stents. J Am Coll Cardiol. 2010;56:S1–S42.

    CAS  PubMed  Google Scholar 

  8. Seitz JM, Durisin M, Goldman J, Drelich JW. Recent advances in biodegradable metals for medical sutures: a critical review. Adv Heal. Mater. 2015;4:1915–36.

    CAS  Google Scholar 

  9. Smits PC, Hofma S, Togni M, Vázquez N, Valdés M, Voudris V, et al. Abluminal biodegradable polymer biolimus-eluting stent versus durable polymer everolimus-eluting stent (COMPARE II): a randomised, controlled, non-inferiority trial. Lancet. 2013;381:651–60.

    CAS  PubMed  Google Scholar 

  10. Lee SJ, Jo HH, Lim KS, Lim D, Lee S, Lee JH, et al. Heparin coating on 3D printed poly (l-lactic acid) biodegradable cardiovascular stent via mild surface modification approach for coronary artery implantation. Chem Eng J. 2019;378:122116.

    CAS  Google Scholar 

  11. Lee Y, Lee CH. Augmented reality for personalized nanomedicines. Biotechnol Adv. 2018;36:335–43.

    PubMed  Google Scholar 

  12. Lee Y, Veerubhotla K, Jeong MH, Lee CH. Deep learning in personalization of cardiovascular stents. J Cardiovasc Pharmacol Ther. 2020;25:110–20.

    PubMed  Google Scholar 

  13. El Sabbagh A, Eleid MF, Al-Hijji M, Anavekar NS, Holmes DR, Nkomo VT, et al. The various applications of 3D printing in cardiovascular diseases. Curr Cardiol Rep. 2018;20:47.

    PubMed  Google Scholar 

  14. Park SA, Lee SJ, Lim KS, Bae IH, Lee JH, Kim WD, et al. In vivo evaluation and characterization of a bio-absorbable drug-coated stent fabricated using a 3D-printing system. Mater Lett. 2015;141:355–8.

    CAS  Google Scholar 

  15. Van Lith R, Baker E, Ware H, Yang J, Farsheed AC, Sun C, et al. 3D-printing strong high-resolution antioxidant Bioresorbable vascular stents. Adv Mater Technol. 2016;1:1600138.

    Google Scholar 

  16. Cabrera MS, Sanders B, Goor OJGM, Driessen-Mol A, Oomens CWJ, Baaijens FPT. Computationally designed 3D printed self-expandable polymer stents with biodegradation capacity for minimally invasive heart valve implantation: a proof-of-concept study. 3D print. Addit. Manuf. 2017;4:19–29.

    Google Scholar 

  17. Mahmood F, Owais K, Taylor C, Montealegre-Gallegos M, Manning W, Matyal R, et al. Three-dimensional printing of mitral valve using echocardiographic data. JACC Cardiovasc Imaging. 2015;8:227.

    PubMed  Google Scholar 

  18. Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging. 2017;10:171.

    PubMed  PubMed Central  Google Scholar 

  19. Valverde I. Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions. Rev Española Cardiol English Ed. 2017;70:282–91.

    Google Scholar 

  20. Shi D, Liu K, Zhang X, Liao H, Chen X. Applications of three-dimensional printing technology in the cardiovascular field. Intern Emerg Med. 2015;10:769–80.

    PubMed  Google Scholar 

  21. Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater. 2016;32:54–64.

    CAS  PubMed  Google Scholar 

  22. Wang X, Jiang M, Zhou Z, Gou J, Hui D. 3D printing of polymer matrix composites: a review and prospective. Compos Part B Eng. 2017;110:442–58.

    CAS  Google Scholar 

  23. Contessi Negrini N, Celikkin N, Tarsini P, Farè S, Święszkowski W. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering. Biofabrication. 2020;12:25001.

    Google Scholar 

  24. Jang T-S, Jung H-D, Pan HM, Tun H, Chen S, Song J. 3D printing of hydrogel composite systems: recent advances in technology for tissue engineering. Int J Bioprinting 2018;4.

  25. He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J. Research on the printability of hydrogels in 3D bioprinting. Sci Rep 2016;6.

  26. Prince E, Kumacheva E. Design and applications of man-made biomimetic fibrillar hydrogels. Nat Rev Mater. 2019;4:99–115.

    Google Scholar 

  27. Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN. A multimaterial bioink method for 3D printing tunable. Cell-Compatible Hydrogels Adv Mater. 2015;27:1607–14.

    CAS  PubMed  Google Scholar 

  28. Chan HN, Shu Y, Tian Q, Chen Y, Chen Y, Wu H. Replicating 3D printed structures into hydrogels. Mater Horizons. 2016;3:309–13.

    CAS  Google Scholar 

  29. Lee JM, Yeong WY. Design and printing strategies in 3D bioprinting of cell-hydrogels: a review. Adv Heal Mater. 2016;5:2856–65.

    CAS  Google Scholar 

  30. Oh B, Melchert RB, Lee CH. Biomimicking robust hydrogel for the Mesenchymal stem cell carrier. Pharm Res. 2015;32:3213–27.

    CAS  PubMed  Google Scholar 

  31. Liang Y, Liu W, Han B, Yang C, Ma Q, Song F, et al. An in situ formed biodegradable hydrogel for reconstruction of the corneal endothelium. Colloids Surfaces B Biointerfaces. 2011;82:1–7.

    CAS  PubMed  Google Scholar 

  32. Sarker B, Papageorgiou DG, Silva R, Zehnder T, Gul-E-Noor F, Bertmer M, et al. Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J Mater Chem B. 2014;2:1470–82.

    CAS  PubMed  Google Scholar 

  33. Chun KH, Kwon IC, Kim YH, La SB, Sohn YT, Jeong SY. Preparation of sodium alginate microspheres containing hydrophilic β-lactam antibiotics. Arch Pharm Res. 1996;19:106–11.

    CAS  Google Scholar 

  34. Meng F, Hennink WE, Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials Netherlands. 2009;30:2180–98.

    CAS  Google Scholar 

  35. Li L, Lu C, Wang L, Chen M, White J, Hao X, et al. Gelatin-based Photocurable hydrogels for corneal wound repair. ACS Appl Mater Interfaces United States. 2018;10:13283–92.

    CAS  Google Scholar 

  36. Griesser J, Hetényi G, Bernkop-Schnürch A. Thiolated Hyaluronic Acid as Versatile Mucoadhesive Polymer: From the Chemistry Behind to Product Developments-What Are the Capabilities? Polymers (Basel). 2018;10:243.

    Google Scholar 

  37. Zhang X, Megone W, Peijs T, Gautrot JE. Functionalization of electrospun PLA fibers using amphiphilic block copolymers for use in carboxy-methyl-cellulose hydrogel composites. Nanocomposites Taylor & Francis. 2020;6:85–98.

    CAS  Google Scholar 

  38. Olate-Moya F, Arens L, Wilhelm M, Mateos-Timoneda MA, Engel E, Palza H. Chondroinductive alginate-based hydrogels having Graphene oxide for 3D printed scaffold fabrication. ACS Appl Mater Interfaces. 2020;12:4343–57.

    CAS  PubMed  Google Scholar 

  39. Cha C, Shin SR, Gao X, Annabi N, Dokmeci MR, Tang XS, et al. Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide. Small. 2014;10:514–23.

    CAS  PubMed  Google Scholar 

  40. Mackay ME, Dao TT, Tuteja A, Ho DL, van Horn B, Kim H-C, et al. Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nat Mater England. 2003;2:762–6.

    CAS  Google Scholar 

  41. Jain S, Goossens JGP, Peters GWM, van Duin M, Lemstra PJ. Strong decrease in viscosity of nanoparticle-filled polymer melts through selective adsorption. Soft Matter. 2008;4:1848–54.

    CAS  Google Scholar 

  42. Jindal AB, Wasnik MN, Nair HA. Synthesis of thiolated alginate and evaluation of mucoadhesiveness, cytotoxicity and release retardant properties. Indian J Pharm Sci Medknow Publications. 2010;72:766–74.

    CAS  Google Scholar 

  43. des Ligneris E, Dumée LF, Kong L. Nanofibers for heavy metal ion adsorption: Correlating surface properties to adsorption performance, and strategies for ion selectivity and recovery. Environ. Nanotechnology, Monit. Manag. 2020;13:100297.

    Google Scholar 

  44. Li J, Li J, Feng D, Zhao J, Sun J, Li D. Excellent rheological performance and impact toughness of cellulose nanofibers/PLA/ionomer composite. RSC Adv. 2017;7:28889–97.

    CAS  Google Scholar 

  45. Mohammadian M, A.K. H. Systematic parameter study for nano-fiber fabrication via electrospinning process. Bulg. Chem. Commun. 2014;46:545–55.

  46. Palmieri S, Pierpaoli M, Riderelli L, Qi S, Letizia Ruello M. Preparation and characterization of an electrospun PLA-cyclodextrins composite for simultaneous high-efficiency PM and VOC removal. J Compos Sci 2020;4.

  47. Li Y, Lim CT, Kotaki M. Study on structural and mechanical properties of porous PLA nanofibers electrospun by channel-based electrospinning system. Polymer (Guildf). 2015;56:572–80.

    CAS  Google Scholar 

  48. Issaadi K, Habi A, Grohens Y, Pillin I. Maleic anhydride-grafted poly (lactic acid) as a compatibilizer in poly(lactic acid)/graphene oxide nanocomposites. Polym Bull. 2016;73:2057–71.

    CAS  Google Scholar 

  49. Coleman BD, Markovitz H, Noll W. Viscometric flows of non-Newtonian fluids; theory and experiment. New York: Springer-Verlag; 1966.

    Google Scholar 

  50. Miyanaji H, Momenzadeh N, Yang L. Effect of printing speed on quality of printed parts in binder jetting process. Addit Manuf. 2018;20:1–10.

    Google Scholar 

  51. Gao Q, He Y, Fu J, Liu A, Ma L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials. 2015;61:203–15.

    CAS  PubMed  Google Scholar 

  52. Gnanasekaran K, Heijmans T, van Bennekom S, Woldhuis H, Wijnia S, de With G, et al. 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Appl Mater Today. 2017;9:21–8.

    Google Scholar 

  53. Han Y, Wei C, Dong J. Super-resolution electrohydrodynamic (EHD) 3D printing of micro-structures using phase-change inks. Manuf Lett. 2014;2:96–9.

    Google Scholar 

  54. Yang F, Zhang M, Bhandari B, Liu Y. Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT. 2018;87:67–76.

    CAS  Google Scholar 

  55. Kuo CK, Ma PX. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro. J Biomed Mater Res Part A. 2008;84A:899–907.

    CAS  Google Scholar 

  56. Guan G, Yu C, Xing M, Wu Y, Hu X, Wang H, et al. Hydrogel Small-Diameter Vascular Graft Reinforced with a Braided Fiber Strut with Improved Mechanical Properties. Polymers (Basel). 2019;11:810.

    CAS  Google Scholar 

  57. Liu W, Dong Y, Liu D, Bai Y, Lu X. Polylactic acid (PLA)/cellulose Nanowhiskers (CNWs) composite Nanofibers: microstructural and properties analysis. J. Compos. Sci. 2018;2.

  58. Wang C, Wu K, Scott GG, Akisanya AR, Gan Q, Zhou Y. A new method for pore structure quantification and pore network extraction from SEM images. Energy & Fuels American Chemical Society. 2020;34:82–94.

    CAS  Google Scholar 

  59. Cheng C, Helderman F, Tempel D, Segers D, Hierck B, Poelmann R, et al. Large variations in absolute wall shear stress levels within one species and between species. Atherosclerosis. 2007;195:225–35.

    CAS  PubMed  Google Scholar 

  60. Nuutinen J-P, Clerc C, Reinikainen R, Törmälä P. Mechanical properties and in vitro degradation of bioabsorbable self-expanding braided stents. J Biomater Sci Polym Ed. 2003;14:255–66.

    CAS  PubMed  Google Scholar 

  61. Charonko J, Karri S, Schmieg J, Prabhu S, Vlachos P. In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress. Ann Biomed Eng. 2009;37:1310–21.

    PubMed  Google Scholar 

  62. Shinohara S, Kihara T, Sakai S, Matsusaki M, Akashi M, Taya M, et al. Fabrication of in vitro three-dimensional multilayered blood vessel model using human endothelial and smooth muscle cells and high-strength PEG hydrogel. J Biosci Bioeng. 2013;116:231–4.

    CAS  PubMed  Google Scholar 

  63. Slager CJ, Wentzel JJ, Gijsen FJH, Thury A, van der Wal AC, Schaar JA, et al. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat Clin Pract Cardiovasc Med. 2005;2:456–64.

    CAS  PubMed  Google Scholar 

  64. Seo T, Schachter LG, Barakat AI. Computational study of fluid mechanical disturbance induced by endovascular stents. Ann Biomed Eng. 2005;33:444–56.

    PubMed  Google Scholar 

  65. Matyash M, Despang F, Ikonomidou C, Gelinsky M. Swelling and mechanical properties of alginate hydrogels with respect to promotion of neural growth. Tissue Eng Part C Methods. 2013;20:401–11.

    PubMed  Google Scholar 

  66. Satheeshababu BK, Mohamed I. Synthesis and characterization of sodium alginate conjugate and study of effect of conjugation on drug release from matrix tablet. Indian J Pharm Sci. 2015;77:579–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Balakrishnan B, Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials. 2005;26:3941–51.

    CAS  PubMed  Google Scholar 

  68. Narayanan LK, Huebner P, Fisher MB, Spang JT, Starly B, Shirwaiker RA. 3D-bioprinting of Polylactic acid (PLA) Nanofiber–alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater Sci Eng. 2016;2:1732–42.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was supported by faculty bridge research fund from School of Pharmacy, UMKC. We would like to thank Dr. Zahra Niroobakhsh and Mr. Houman Honaryar for allowing us to use the Rheometer and assistance in handling the Rheometer. There is no financial/commercial conflict of interest.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Chi H. Lee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veerubhotla, K., Lee, Y. & Lee, C.H. Parametric Optimization of 3D Printed Hydrogel-Based Cardiovascular Stent. Pharm Res 38, 885–900 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key Words

  • 3D printing technique
  • alginate hydrogel
  • cell viability
  • personalized biodegradable stent