Skip to main content
Log in

Liposome Click Membrane Permeability Assay for Identifying Permeable Peptides

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

A Correction to this article was published on 05 April 2021

This article has been updated

Abstract

Purpose

To develop a novel, target agnostic liposome click membrane permeability assay (LCMPA) using liposome encapsulating copper free click reagent dibenzo cyclooctyne biotin (DBCO-Biotin) to conjugate azido modified peptides that may effectively translocate from extravesicular space into the liposome lumen.

Method

DBCO-Biotin liposomes were prepared with egg phosphatidylcholine and cholesterol by lipid film rehydration, freeze/thaw followed by extrusion. Size of DBCO-Biotin liposomes were characterized with dynamic light scattering.

Results

The permeable peptides representing energy independent mechanism of permeability showed higher biotinylation in LCMPA. Individual peptide permeability results from LCMPA correlated well with shifts in potency in cellular versus biochemical assays (i.e., cellular/ biochemical ratio) demonstrating quantitative correlation to intracellular barrier in intact cells.

Conclusion

The study provides a novel membrane permeability assay that has potential to evaluate energy independent transport of diverse peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Nielsen DS, Shepherd NE, Xu W, Lucke AJ, Stoermer MJ, Fairlie DP. Orally absorbed cyclic peptides. Chem Rev. 2017;117(12):8094–128.

    Article  CAS  Google Scholar 

  2. Vinogradov AA, Yin YZ, Suga H. Macrocyclic peptides as drug candidates: recent Progress and remaining challenges. J Am Chem Soc. 2019;141(10):4167–81.

    Article  CAS  Google Scholar 

  3. Ahlbach CL, Lexa KW, Bockus AT, Chen V, Crews P, Jacobson MP, et al. Beyond cyclosporine a: conformation-dependent passive membrane permeabilities of cyclic peptide natural products. Future Med Chem. 2015;7(16):2121–30.

    Article  CAS  Google Scholar 

  4. Walport LJ, Obexer R, Suga H. Strategies for transitioning macrocyclic peptides to cell permeable drug leads. Curr Opin Biotech. 2017;48:242–50.

    Article  CAS  Google Scholar 

  5. Josephson K, Ricardo A, Szostak JW. mRNA display: from basic principles to macrocycle drug discovery. Drug Discov Today. 2014;19(4):388–99.

    Article  CAS  Google Scholar 

  6. Matsson P, Doak BC, Over B, Kihlberg J. Cell permeability beyond the rule of 5. Adv Drug Deliver Rev. 2016;101:42–61.

    Article  CAS  Google Scholar 

  7. Mateus A, Gordon LJ, Wayne GJ, Almqvist H, Axelsson H, Seashore-Ludlow B, et al. Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery. Proc Natl Acad Sci U S A. 2017;114(30):E6231–E9.

    Article  CAS  Google Scholar 

  8. Sawyer TK, Partridge AW, Kaan HYK, Juang YC, Lim S, Johannes C, et al. Macrocyclic alpha helical peptide therapeutic modality: a perspective of learnings and challenges. Bioorg Med Chem. 2018;26(10):2807–15.

    Article  CAS  Google Scholar 

  9. Treyer A, Mateus A, Wisniewski JR, Boriss H, Matsson P, Artursson P. Intracellular drug bioavailability: effect of neutral lipids and phospholipids. Mol Pharm. 2018;15(6):2224–33.

    Article  CAS  Google Scholar 

  10. Treyer A, Ullah M, Parrott N, Molitor B, Fowler S, Artursson P. Impact of intracellular concentrations on metabolic drug-drug interaction studies. AAPS J. 2019;21(5):77.

    Article  Google Scholar 

  11. Boehm M, Beaumont K, Jones R, Kalgutkar AS, Zhang L, Atkinson K, et al. Discovery of potent and orally bioavailable macrocyclic peptide-Peptoid hybrid CXCR7 modulators. J Med Chem. 2017;60(23):9653–63.

    Article  CAS  Google Scholar 

  12. Kwon YU, Kodadek T. Quantitative evaluation of the relative cell permeability of peptoids and peptides. J Am Chem Soc. 2007;129(6):1508–9.

    Article  CAS  Google Scholar 

  13. Schwochert J, Turner R, Thang M, Berkeley RF, Ponkey AR, Rodriguez KM, et al. Peptide to Peptoid substitutions increase cell permeability in cyclic Hexapeptides. Org Lett. 2015;17(12):2928–31.

    Article  CAS  Google Scholar 

  14. Berben P, Bauer-Brandl A, Brandl M, Faller B, Flaten GE, Jacobsen AC, et al. Drug permeability profiling using cell-free permeation tools: overview and applications. Eur J Pharm Sci. 2018;119:219–33.

    Article  CAS  Google Scholar 

  15. Li AP. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today. 2001;6(7):357–66.

    Article  CAS  Google Scholar 

  16. Peraro L, Kritzer JA. Emerging methods and design principles for cell-penetrant peptides. Angew Chem Int Ed Engl. 2018;57(37):11868–81.

    Article  CAS  Google Scholar 

  17. Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem. 1998;41(7):1007–10.

    Article  CAS  Google Scholar 

  18. Codelli JA, Baskin JM, Agard NJ, Bertozzi CR. Second-generation difluorinated cyclooctynes for copper-free click chemistry. J Am Chem Soc. 2008;130(34):11486–93.

    Article  CAS  Google Scholar 

  19. Erazo-Oliveras A, Najjar K, Truong D, Wang TY, Brock DJ, Prater AR, et al. The late endosome and its lipid BMP act as gateways for efficient cytosolic access of the delivery agent dfTAT and its macromolecular cargos. Cell Chem Biol. 2016;23(5):598–607.

    Article  CAS  Google Scholar 

  20. Allolio C, Magarkar A, Jurkiewicz P, Baxova K, Javanainen M, Mason PE, et al. Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore. Proc Natl Acad Sci U S A. 2018;115(47):11923–8.

    Article  CAS  Google Scholar 

  21. Richard JP, Melikov K, Brooks H, Prevot P, Lebleu B, Chernomordik LV. Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem. 2005;280(15):15300–6.

    Article  CAS  Google Scholar 

  22. Brock DJ, Kondow-McConaghy HM, Hager EC, Pellois JP. Endosomal escape and cytosolic penetration of macromolecules mediated by synthetic delivery agents. Bioconjug Chem. 2019;30(2):293–304.

    Article  CAS  Google Scholar 

  23. Yang ST, Zaitseva E, Chernomordik LV, Melikov K. Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid. Biophys J. 2010;99(8):2525–33.

    Article  CAS  Google Scholar 

  24. Avdeef A. Physicochemical profiling (solubility, permeability and charge state). Curr Top Med Chem. 2001;1(4):277–351.

    Article  CAS  Google Scholar 

  25. Chang YS, Graves B, Guerlavais V, Tovar C, Packman K, To KH, et al. Stapled alpha-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc Natl Acad Sci U S A. 2013;110(36):E3445–54.

    Article  CAS  Google Scholar 

  26. Chu Q, Moellering RE, Hilinski GJ, Kim YW, Grossmann TN, Yeh JTH, et al. Towards understanding cell penetration by stapled peptides. Medchemcomm. 2015;6(1):111–9.

    Article  CAS  Google Scholar 

  27. Partridge AW, Kaan HYK, Juang YC, Sadruddin A, Lim S, Brown CJ, et al. Incorporation of putative helix-breaking amino acids in the design of novel stapled peptides: exploring biophysical and cellular permeability properties. Molecules. 2019;24(12).

  28. Bird GH, Madani N, Perry AF, Princiotto AM, Supko JG, He X, et al. Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic. Proc Natl Acad Sci U S A. 2010;107(32):14093–8.

    Article  CAS  Google Scholar 

  29. Falavigna M, Klitgaard M, Brase C, Ternullo S, Skalko-Basnet N, Flaten GE. Mucus-PVPA (mucus phospholipid vesicle-based permeation assay): an artificial permeability tool for drug screening and formulation development. Int J Pharm. 2018;537(1–2):213–22.

    Article  CAS  Google Scholar 

  30. Flaten GE, Dhanikula AB, Luthman K, Brandl M. Drug permeability across a phospholipid vesicle based barrier: a novel approach for studying passive diffusion. Eur J Pharm Sci. 2006;27(1):80–90.

    Article  CAS  Google Scholar 

  31. Cruz J, Mihailescu M, Wiedman G, Herman K, Searson PC, Wimley WC, et al. A membrane-Translocating peptide penetrates into bilayers without significant bilayer perturbations. Biophys J. 2013;104(11):2419–28.

    Article  CAS  Google Scholar 

  32. Fuselier T, Wimley WC. Spontaneous membrane Translocating peptides: the role of Leucine-arginine consensus motifs. Biophys J. 2017;113(4):835–46.

    Article  CAS  Google Scholar 

  33. Marks JR, Placone J, Hristova K, Wimley WC. Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. J Am Chem Soc. 2011;133(23):8995–9004.

    Article  CAS  Google Scholar 

  34. White TR, Renzelman CM, Rand AC, Rezai T, McEwen CM, Gelev VM, et al. On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat Chem Biol. 2011;7(11):810–7.

    Article  CAS  Google Scholar 

  35. Gautreau A, Oguievetskaia K, Ungermann C. Function and regulation of the endosomal fusion and fission machineries. Cold Spring Harb Perspect Biol. 2014;6(3).

  36. Ostrowicz CW, Meiringer CT, Ungermann C. Yeast vacuole fusion: a model system for eukaryotic endomembrane dynamics. Autophagy. 2008;4(1):5–19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

None

Corresponding authors

Correspondence to Tanvi J. Desai or Jerome Hochman.

Ethics declarations

Conflict of Interest

Authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised to replace Fig. 1. with the correct figure.

Supplementary Information

ESM 1

(DOCX 558 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, T.J., Habulihaz, B., Cannon, J.R. et al. Liposome Click Membrane Permeability Assay for Identifying Permeable Peptides. Pharm Res 38, 843–850 (2021). https://doi.org/10.1007/s11095-021-03005-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03005-z

Key words

Navigation