Skip to main content

Antibiofilm Effects of Macrolide Loaded Microneedle Patches: Prospects in Healing Infected Wounds

Abstract

Aim

The aim of this study was to fabricate polymeric microneedles, loaded with macrolides (erythromycin, azithromycin), using hyaluronic acid and polyvinyl pyrollidone.

Methods

These microneedles were fabricated using a vacuum micromolding technique. The integrity of the microneedle patches was studied by recording their morphologic features, folding endurance, swelling and micro-piercing. Physicochemical characteristics were studied by differential scanning calorimetry, thermogravimetric analysis and fourier transform infrared spectroscopy. In-vitro drug release, antibiofilm and effect of microneedle patch on wound healing were also studied to confirm the efficacy of the formulations.

Results

Formulated patches displayed acceptable folding endurance (>100) and uniform distribution of microneedles (10 × 10) that can penetrate parafilm. Differential scanning calorimetry results depict a decrease in the crystallinity of macrolides following their incorporation in to a polymer matrix. Percentage release of azithromycin and erythromycin from the polymeric patch formulations (over 30 min) was 90% and 63% respectively. Broadly, the zone of bacterial growth inhibition follows the same order for Staphylococcus aureus, Escherichia coli and Salmonella enterica. After 5 days of treatment with azithromycin patches, the wound healing was complete and skin structure (e.g. hair follicles and dermis) was regenerated.

Conclusion

It was concluded that azithromycin loaded microneedle patches can be used to treat biofilms in the infected wounds.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ahmad Z, Stride E, Edirisinghe M. Novel preparation of transdermal drug-delivery patches and functional wound healing materials. J Drug Target. 2009;17(9):724–9.

    CAS  Article  Google Scholar 

  2. Khan H, Mehta P, Msallam H, Armitage D, Ahmad Z. Smart microneedle coatings for controlled delivery and biomedical analysis. J Drug Target. 2014;22(9):790–5.

    CAS  Article  Google Scholar 

  3. Percival SL, McCarty SM, Lipsky B. Biofilms and wounds: an overview of the evidence. Adv Wound Care. 2015;4(7):373–81.

    Article  Google Scholar 

  4. Ashrafi M, Novak-Frazer L, Bates M, Baguneid M, Alonso-Rasgado T, Xia G, et al. Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures. Sci Rep. 2018;8(1):1–16.

    CAS  Article  Google Scholar 

  5. Caffarel-Salvador E, Kearney M-C, Mairs R, Gallo L, Stewart SA, Brady AJ, et al. Methylene blue-loaded dissolving microneedles: potential use in photodynamic antimicrobial chemotherapy of infected wounds. Pharmaceutics. 2015;7(4):397–412.

    CAS  Article  Google Scholar 

  6. Ali R, Mehta P, Arshad M, Kucuk I, Chang M, Ahmad Z. Transdermal microneedles—a materials perspective. AAPS PharmSciTech. 2020;21(1):12.

    Article  Google Scholar 

  7. Haj-Ahmad R, Khan H, Arshad MS, Rasekh M, Hussain A, Walsh S, et al. Microneedle coating techniques for transdermal drug delivery. Pharmaceutics. 2015;7(4):486–502.

    CAS  Article  Google Scholar 

  8. Xenikakis I, Tzimtzimis M, Tsongas K, Andreadis D, Demiri E, Tzetzis D, et al. Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro. Eur J Pharm Sci. 2019;137:104976.

    CAS  Article  Google Scholar 

  9. Larraneta E, Lutton RE, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep. 2016;104:1–32.

    Article  Google Scholar 

  10. Ramadon D, Permana AD, Courtenay AJ, McCrudden MT, Tekko IA, McAlister E, et al. Development, evaluation and pharmacokinetic assessment of polymeric microarray patches for transdermal delivery of vancomycin hydrochloride. Mol Pharm. 2020.

  11. Permana AD, Mir M, Utomo E, Donnelly RF. Bacterially sensitive nanoparticle-based dissolving microneedles of doxycycline for enhanced treatment of bacterial biofilm skin infection: a proof of concept study. Int J Pharm X. 2020;2:100047.

    PubMed  PubMed Central  Google Scholar 

  12. Iacob A-T, Drăgan M, Ghețu N, Pieptu D, Vasile C, Buron F, et al. Preparation, characterization and wound healing effects of new membranes based on chitosan, hyaluronic acid and arginine derivatives. Polymers. 2018;10(6):607.

    Article  Google Scholar 

  13. Price RD, Myers S, Leigh IM, Navsaria HA. The role of hyaluronic acid in wound healing. Am J Clin Dermatol. 2005;6(6):393–402.

    Article  Google Scholar 

  14. Rasekh M, Karavasili C, Soong YL, Bouropoulos N, Morris M, Armitage D, et al. Electrospun PVP–indomethacin constituents for transdermal dressings and drug delivery devices. Int J Pharm. 2014;473(1–2):95–104.

    CAS  Article  Google Scholar 

  15. Wang J-C, Zheng H, Chang M-W, Ahmad Z, Li J-S. Preparation of active 3D film patches via aligned fiber electrohydrodynamic (EHD) printing. Sci Rep. 2017;7:43924.

    Article  Google Scholar 

  16. Mehta P, Justo L, Walsh S, Arshad MS, Wilson CG, O’Sullivan CK, et al. New platforms for multi-functional ocular lenses: engineering double-sided functionalized nano-coatings. J Drug Target. 2015;23(4):305–10.

    CAS  Article  Google Scholar 

  17. Wang L, Chang M-W, Ahmad Z, Zheng H, Li J-S. Mass and controlled fabrication of aligned PVP fibers for matrix type antibiotic drug delivery systems. Chem Eng J. 2017;307:661–9.

    CAS  Article  Google Scholar 

  18. Nair B. Final report on the safety assessment of polyvinylpyrrolidone (PVP). Int J Toxicol. 1998;17(4_suppl):95–130.

  19. Wu W, Tian H, Xiang A. Influence of polyol plasticizers on the properties of polyvinyl alcohol films fabricated by melt processing. J Polym Environ. 2012;20(1):63–9.

    CAS  Article  Google Scholar 

  20. Parra-Ruiz J, Vidaillac C, Rybak MJ. Macrolides and staphylococcal biofilms. Rev Esp Quimioter. 2012;25(1).

  21. Kanoh S, Rubin BK. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev. 2010;23(3):590–615.

    CAS  Article  Google Scholar 

  22. Ahmad Z, Vargas-Reus M, Bakhshi R, Ryan F, Ren G, Oktar F, et al. Antimicrobial properties of electrically formed elastomeric polyurethane–copper oxide nanocomposites for medical and dental applications. In: Methods in enzymology: Elsevier; 2012. p. 87–99.

  23. Arshad MS, Hassan S, Hussain A, Abbas N, Kucuk I, Nazari K, et al. Improved transdermal delivery of cetirizine hydrochloride using polymeric microneedles. Daru. 2019;27(2):673–81.

    CAS  Article  Google Scholar 

  24. Arshad MS, Fatima S, Nazari K, Ali R, Farhan M, Muhammad SA, et al. Engineering and characterisation of BCG-loaded polymeric microneedles. J Drug Target. 2019:1–8.

  25. Arshad MS, Zafar S, Zahra AT, Zaman H, Akhtar A, Kucuk I, et al. Fabrication and characterization of self-applicating Heparin sodium microneedle patches. J Drug Target. 2020.

  26. Larrañeta E, Moore J, Vicente-Pérez EM, González-Vázquez P, Lutton R, Woolfson AD, et al. A proposed model membrane and test method for microneedle insertion studies. Int J Pharm. 2014;472(1–2):65–73.

    Article  Google Scholar 

  27. Tepe JB, St. John C. Determination of erythromycin by ultraviolet spectrophotometry. Anal Chem. 1955;27(5):744–6.

    CAS  Article  Google Scholar 

  28. Suma B, Thachemperil JM, Venkataramana C. Spectrophotometric method development and validation of azithromycin in tablet formulation. J Dent Orofac Res. 2018;14(1):23–7.

    Google Scholar 

  29. Kafedjiiski K, Jetti RK, Föger F, Hoyer H, Werle M, Hoffer M, et al. Synthesis and in vitro evaluation of thiolated hyaluronic acid for mucoadhesive drug delivery. Int J Pharm. 2007;343(1–2):48–58.

    CAS  Article  Google Scholar 

  30. Saroj A, Singh R, Chandra S. Studies on polymer electrolyte poly (vinyl) pyrrolidone (PVP) complexed with ionic liquid: effect of complexation on thermal stability, conductivity and relaxation behaviour. Mater Sci Eng B. 2013;178(4):231–8.

    CAS  Article  Google Scholar 

  31. Pignatello R, Mangiafico A, Ruozi B, Puglisi G, Furneri PM. Amphiphilic erythromycin-lipoamino acid ion pairs: characterization and in vitro microbiological evaluation. AAPS PharmSciTech. 2011;12(2):468–75.

    CAS  Article  Google Scholar 

  32. Chen Q, Yin C, Ma J, Tu J, Shen Y. Preparation and evaluation of topically applied azithromycin based on sodium hyaluronate in treatment of conjunctivitis. Pharmaceutics. 2019;11(4):183.

    CAS  Article  Google Scholar 

  33. Loría-Bastarrachea M, Herrera-Kao W, Cauich-Rodríguez J, Cervantes-Uc J, Vázquez-Torres H, Ávila-Ortega A. A TG/FTIR study on the thermal degradation of poly (vinyl pyrrolidone). J Therm Anal Calorim. 2011;104(2):737–42.

    Article  Google Scholar 

  34. Lindholm C, Searle R. Wound management for the 21st century: combining effectiveness and efficiency. Int Wound J. 2016;13:5–15.

    Article  Google Scholar 

  35. Schultz G, Bjarnsholt T, James GA, Leaper DJ, McBain AJ, Malone M, et al. Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds. Wound Repair Regen. 2017;25(5):744–57.

    Article  Google Scholar 

  36. Hashemi K, Donaldson L, Freeman J, Sokhi G, Gyde O, Smith H. The use of topical thrombin to reduce wound haematoma in patients receiving low-dose heparin. Curr Med Res Opin. 1981;7(7):458–62.

    CAS  Article  Google Scholar 

  37. Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian E, et al. Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev. 2018;127:138–66.

    CAS  Article  Google Scholar 

  38. Mir M, Permana AD, Ahmed N, Khan GM, ur Rehman A, Donnelly RF. Enhancement in site-specific delivery of carvacrol for potential treatment of infected wounds using infection responsive nanoparticles loaded into dissolving microneedles: A proof of concept study. Eur J Pharm Biopharm. 2020;147:57–68.

    CAS  Article  Google Scholar 

  39. da Costa NF, Pinto JF, Fernandes AI. Co-amorphization of olanzapine for solubility enhancement. Ann Med. 2019;51(sup1):87–87.

    Google Scholar 

  40. Arshad MS, Smith G, Polygalov E, Ermolina I. Through-vial impedance spectroscopy of critical events during the freezing stage of the lyophilization cycle: the example of the impact of sucrose on the crystallization of mannitol. Eur J Pharm Biopharm. 2014;87(3):598–605.

    CAS  Article  Google Scholar 

  41. Lee I-C, Wu Y-C, Tsai S-W, Chen C-H, Wu M-H. Fabrication of two-layer dissolving polyvinylpyrrolidone microneedles with different molecular weights for in vivo insulin transdermal delivery. RSC Adv. 2017;7(9):5067–75.

    CAS  Article  Google Scholar 

  42. Jelić D, Antolović R. From erythromycin to azithromycin and new potential ribosome-binding antimicrobials. Antibiotics. 2016;5(3):29.

    Article  Google Scholar 

  43. McHugh R, Rice A, Sangha N, McCarty M, Utterback R, Rohrback J, et al. A topical azithromycin preparation for the treatment of acne vulgaris and rosacea. J Dermatolog Treat. 2004;15(5):295–302.

    CAS  Article  Google Scholar 

Download references

Acknowledgements and Disclosures

The authors acknowledge the financial support provided by Higher Education Commission of Pakistan under National Research Program for Universities (NRPU) vide No: 7401/Punjab/NRPU/R&D/HEC/2017. The authors have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeeshan Ahmad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arshad, M.S., Zahra, A.T., Zafar, S. et al. Antibiofilm Effects of Macrolide Loaded Microneedle Patches: Prospects in Healing Infected Wounds. Pharm Res 38, 165–177 (2021). https://doi.org/10.1007/s11095-021-02995-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-02995-0

key words

  • azithromycin
  • biofilm
  • erythromycin
  • macrolide
  • microneedles
  • transdermal