Exosomal Secretion of Adipose Tissue during Various Physiological States


Exosomes are secreted extracellular vesicles containing a wide array of biologically active components. Recent studies have demonstrated that exosomes serve as an important vehicle for extracellular communication and exert systemic effects on the physiology of organisms. Adipose tissues (ATs) play a key role in balancing systemic energy homeostasis as a central hub for fatty acid metabolism. At the same time, proper endocrine function of ATs has also been shown to be crucial for regulating physiological and metabolic health. The endocrine function of ATs is partially mediated by AT-derived exosomes that regulate metabolic homeostasis, such as insulin signaling, lipolysis, and inflammation. During the pathogenesis of obesity, metabolic syndrome, and cancer, exosomes shed by the resident cells in ATs may also have a role in regulating the progression of these diseases along with associated pathologies. In this review, we summarize the contents of AT-derived exosomes and their effects on various cell populations along with possible underlying molecular mechanisms. We further discuss the potential applications of exosomes as a drug delivery tool and therapeutic target.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3



Adipose-derived stem cells


Protein kinase B




AMP-activated protein kinase


Apoptotic protease activating factor


Adipose tissue


Adipose tissue derived exosomes




Brown adipose tissue


Branched-chain amino acid transaminase, FABP, fatty acid binding protein


Chemokine (C-C motif) ligand


CCAAT/ enhancer-binding protein


Delta like canonical Notch ligand


Extracellular signal regulated kinase


Extracellular vesicles


F-Box and WD repeat domain containing


Fibroblast growth factor


Fibronectin type III domain-containing protein


Gestational diabetes mellitus, aP, adipocyte protein


Glucose transporter


Hormone sensitive lipase


Human umbilical vein endothelial cells


Insulin-like growth factor receptor




Insulin receptor substrate


Kruppel-like factor


Metastasis associated lung adenocarcinoma transcript


Mitogen-activated protein kinase


Mouse double minute homolog


Matrix metalloproteinase


Mammalian target of rapamycin


Nonalcoholic fatty liver disease, Bcl, B cell lymphoma




Phosphoinositide 3-kinase




Peroxisome proliferator-activated receptor


PR domain containing


Patched-1 protein


Pumilio RNA binding family member


Retinal noncoding RNA3


Stromal cell derived factor


Sonic hedgehog




Signal transducer and activator of transcription


Transforming growth factor


Tissue inhibitor of metalloproteinases


Toll-like receptor


Tumor necrosis factor


Uncoupling protein


Vascular endothelial growth factor


White adipose tissue


WNT1 inducible signaling pathway protein, HIF, hypoxia induced factor


  1. 1.

    Patrikoski M, Mannerström B, Miettinen S. Perspectives for clinical translation of adipose stromal/stem cells. Stem Cells Int. 2019;2019:1–21.

    Article  CAS  Google Scholar 

  2. 2.

    Fasshauer M, Blüher M. Adipokines in health and disease. Trends Pharmacol Sci. 2015. p. 461–70.

  3. 3.

    Zhang Y, Yu M, Tian W. Physiological and pathological impact of exosomes of adipose tissue. Cell Prolif. 2016;49:3–13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Choi CHJ, Cohen P. Adipose crosstalk with other cell types in health and disease. Exp. Cell Res. 2017. p. 6–11.

  5. 5.

    Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Jayabalan N, Lai A, Ormazabal V, Adam S, Guanzon D, Palma C, et al. Adipose tissue Exosomal proteomic profile reveals a role on placenta glucose metabolism in gestational diabetes mellitus. J Clin Endocrinol Metab. 2019;104:1735–52.

    PubMed  Article  Google Scholar 

  7. 7.

    Garcia NA, González-King H, Grueso E, Sánchez R, Martinez-Romero A, Jávega B, et al. Circulating exosomes deliver free fatty acids from the bloodstream to cardiac cells: possible role of CD36. PLoS One. 2019;14:e0217546.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes. 2009;58:2498–505.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Liang X, Zhang L, Wang S, Han Q, Zhao RC. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci. 2016;129:2182–9.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Gao X, Salomon C, Freeman DJ. Extracellular vesicles from adipose tissue-A potential role in obesity and type 2 diabetes? Front. Endocrinol. (Lausanne). 2017.

  11. 11.

    Lorente-Cebrián S, González-Muniesa P, Milagro FI, Alfredo MJ. MicroRNAs and other non-coding RNAs in adipose tissue and obesity: emerging roles as biomarkers and therapeutic targets. Clin Sci. 2019;133:23–40.

    Article  Google Scholar 

  12. 12.

    Bruun K, Schermer E, Sivendra A, Valaik E, Wise RB, Said R, et al. Therapeutic applications of adipose-derived stem cells in cardiovascular disease. Am J Stem Cells. 2018;7:94–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014. p. 116–25.

  14. 14.

    Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97:329–39.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;33:967–78.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem. 1998;273:20121–7.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 2018. p. 1–11.

  18. 18.

    Gruenberg J, Van Der Goot FG. Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol. 2006;7:495–504.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Salih M, Fenton RA, Knipscheer J, Janssen JW, Vredenbregt-Van Den Berg MS, Jenster G, et al. An immunoassay for urinary extracellular vesicles. Am J Physiol Ren Physiol 2016;310:F796–F801.

  20. 20.

    Tang YT, Huang YY, Zheng L, Qin SH, Xu XP, An TX, et al. Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med. 2017;40:834–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Lin F, Zeng Z, Song Y, Li L, Wu Z, Zhang X, et al. YBX-1 mediated sorting of miR-133 into derived exosomes to increase fibroblast angiogenesis and MEndoT. 2019;1–13.

  22. 22.

    Cao Q, Guo Z, Yan Y, Wu J, Song C. Exosomal long noncoding RNAs in aging and age-related diseases 2019;1–11.

  23. 23.

    Zhang H, Deng T, Ge S, Liu Y, Bai M, Zhu K, et al. Exosome circRNA secreted from adipocytes promotes the growth of hepatocellular carcinoma by targeting deubiquitination-related USP7. Oncogene. 2019;38:2844–59.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Zhang H, Zhu L, Bai M, Liu Y, Zhan Y, Deng T, et al. Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR-133/PRDM16 pathway. Int J Cancer. 2019;144:2501–15.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Pace KR, Dutt R, Galileo DS. Exosomal L1CAM stimulates glioblastoma cell motility, proliferation, and invasiveness. Int J Mol Sci. 2019;20.

  26. 26.

    Beloribi S, Ristorcelli E, Breuzard G, Silvy F, Bertrand-Michel J, Beraud E, et al. Exosomal lipids impact notch signaling and induce death of human pancreatic tumoral SOJ-6 Cells. Hoheisel JD, editor. PLoS One. 2012;7:e47480.

  27. 27.

    Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 2019. p. 656–73.

  28. 28.

    Zomer A, Steenbeek SC, Maynard C, Van Rheenen J. Studying extracellular vesicle transfer by a Cre-loxP method. Nat Protoc. 2016;11:87–101.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Chen IH, Xue L, Hsu CC, Paez JSP, Panb L, Andaluz H, et al. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc Natl Acad Sci U S A. 2017;114:3175–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Griffiths SG, Cormier MT, Clayton A, Doucette AA. Differential proteome analysis of extracellular vesicles from breast cancer cell lines by chaperone affinity enrichment. Proteomes. 2017;5:1–16.

    Article  CAS  Google Scholar 

  31. 31.

    Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019. p. 242–58.

  32. 32.

    Dai M, Yu M, Zhang Y, Tian W. Exosome-like vesicles derived from adipose tissue provide biochemical cues for adipose tissue regeneration. Tissue Eng - Part A. 2017;23:1221–30.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Zhang Y, Yu M, Dai M, Chen C, Tang Q, Jing W, et al. miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2. J Cell Sci. 2017;130:1158–68.

    CAS  PubMed  Google Scholar 

  34. 34.

    Gentile P, Garcovich S. Concise review: adipose-derived stem cells (ASCs) and adipocyte-secreted Exosomal microRNA (A-SE-miR) modulate Cancer growth and proMote wound repair. J Clin Med. 2019;8:855.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  35. 35.

    Liu K, Chen C, Zhang H, Chen Y, Zhou S. ASC -derived exosomes in combination with hyaluronic acid accelerate wound healing through enhancing re-epithelialization and vascularization. Br J Dermatol. 2019:15–6.

  36. 36.

    An Y, Zhao J, Nie F, Qin Z, Xue H, Wang G, et al. Exosomes from adipose-derived stem cells (ADSCs) overexpressing miR-21 promote vascularization of endothelial cells. Sci Rep. 2019;9:1–10.

    Article  CAS  Google Scholar 

  37. 37.

    Monfared H, Jahangard Y, Nikkhah M, Mirnajafi-Zadeh J, Mowla SJ. Potential therapeutic effects of Exosomes packed with a miR-21-sponge construct in a rat model of Glioblastoma. Front Oncol. 2019;9:782.

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Madonna R, Angelucci S, Di Giuseppe F, Doria V, Giricz Z, Görbe A, et al. Proteomic analysis of the secretome of adipose tissue-derived murine mesenchymal cells overexpressing telomerase and myocardin. J Mol Cell Cardiol. 2019;131:171–86.

    PubMed  Article  Google Scholar 

  39. 39.

    Wang X, Wang H, Cao J, Ye C. Exosomes from adipose-derived stem cells promotes VEGF-C-dependent Lymphangiogenesis by regulating miRNA-132/TGF-β pathway. Cell Physiol Biochem. 2018;49:160–71.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Reddy P, Lent-Schochet D, Ramakrishnan N, McLaughlin M, Jialal I. Metabolic syndrome is an inflammatory disorder: A conspiracy between adipose tissue and phagocytes. Clin Chim Acta. 2019. p. 35–44.

  41. 41.

    Pan Y, Hui X, Chong Hoo RL, Ye D, Cheung Chan CY, Feng T, et al. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest. 2019;129:834–49.

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Batista-Gonzalez A, Vidal R, Criollo A, Carreño LJ. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Front Immunol. 2020;10:2993.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. 43.

    Flaherty SE, Grijalva A, Xu X, Ables E, Nomani A, Ferrante AW. A lipase-independent pathway of lipid release and immune modulation by adipocytes. Science (80- ). 2019;363:989–93.

  44. 44.

    Domenis R, Cifù A, Quaglia S, Pistis C, Moretti M, Vicario A, et al. Pro inflammatory stimuli enhance the immunosuppressive functions of adipose mesenchymal stem cells-derived exosomes. Sci Rep. 2018;8:13325.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Jiang M, Wang H, Jin M, Yang X, Ji H, Jiang Y, et al. Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization. Cell Physiol Biochem. 2018;47:864–78.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Zhao H, Shang Q, Pan Z, Bai Y, Li Z, Zhang H, et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue. Diabetes. 2018;67:235–47.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Chen H-H, Lin K-C, Wallace CG, Chen Y-T, Yang C-C, Leu S, et al. Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury. J Pineal Res. 2014;57:16–32.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Song M, Han L, Chen FF, Wang D, Wang F, Zhang L, et al. Adipocyte-derived exosomes carrying sonic hedgehog mediate M1 macrophage polarization-induced insulin resistance via Ptch and PI3K pathways. Cell Physiol Biochem. 2018;48:1416–32.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Mahmoudi M, Taghavi-Farahabadi M, Rezaei N, Hashemi SM. Comparison of the effects of adipose tissue mesenchymal stromal cell-derived exosomes with conditioned media on neutrophil function and apoptosis. Int Immunopharmacol. 2019;74:105689.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Liu T, Sun YC, Cheng P, Shao HG. Adipose tissue macrophage-derived exosomal miR-29a regulates obesity-associated insulin resistance. Biochem Biophys Res Commun. 2019;515:352–8.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Shi J, Duan J, Gong H, Pang Y, Wang L, Yan Y. Exosomes from miR-20b-3p-overexpressing stromal cells ameliorate calcium oxalate deposition in rat kidney. J Cell Mol Med. 2019;23:7268–78.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Baranova A, Maltseva D, Tonevitsky A. Adipose may actively delay progression of NAFLD by releasing tumor-suppressing, anti-fibrotic miR-122 into circulation. Obes Rev. 2019;20:108–18.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Qu Y, Zhang Q, Cai X, Li F, Ma Z, Xu M, et al. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. J Cell Mol Med. 2017;21:2491–502.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Rong B, Feng R, Liu C, Wu Q, Sun C. Reduced delivery of epididymal adipocyte-derived exosomal resistin is essential for melatonin ameliorating hepatic steatosis in mice. J Pineal Res. 2019;66:1–20.

    Article  CAS  Google Scholar 

  55. 55.

    Ix JH, Sharma K. Mechanisms linking obesity, chronic kidney disease, and fatty liver disease: The roles of fetuin-A, adiponectin, and AMPK [Internet]. J Am Soc Nephrol. 2010. p. 406–12.

  56. 56.

    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of Brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017;542:450–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Chen Y, Pfeifer A. Brown fat-derived exosomes: Small vesicles with big impact [Internet]. Cell Metab. 2017. p. 759–60.

  59. 59.

    Zhou X, Li Z, Qi M, Zhao P, Duan Y, Yang G, et al. Brown adipose tissue-derived exosomes mitigate the metabolic syndrome in high fat diet mice. Theranostics. 2020;10:8197–210.

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Ali Khan A, Hansson J, Weber P, Foehr S, Krijgsveld J, Herzig S, et al. Comparative secretome analyses of primary murine white and brown adipocytes reveal novel adipokines. Mol Cell Proteomics. 2018;17:2358–70.

    PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Yang J, Zhang X, Chen X, Wang L, Yang G. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther - Nucleic Acids. 2017;7:278–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Bonafede, Brandi, Manfredi, Scambi, Schiaffino, Merigo, et al. The Anti-Apoptotic Effect of ASC-Exosomes in an In Vitro ALS Model and Their Proteomic Analysis. Cells. 2019;8:1087.

  63. 63.

    Gao J, Li X, Wang Y, Cao Y, Yao D, Sun L, et al. Adipocyte-derived extracellular vesicles modulate appetite and weight through mTOR signalling in the hypothalamus. Acta Physiol. 2019:1–16.

  64. 64.

    Ching RC, Wiberg M, Kingham PJ. Schwann cell-like differentiated adipose stem cells promote neurite outgrowth via secreted exosomes and RNA transfer 06 biological sciences 0601 biochemistry and cell biology. Stem Cell Res Ther. 2018;9:266.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Cui X, He Z, Liang Z, Chen Z, Wang H, Zhang J. Exosomes from adipose-derived Mesenchymal stem cells protect the myocardium against ischemia/reperfusion injury through Wnt/b-catenin signaling pathway. J Cardiovasc Pharmacol. 2017;70:225–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Obata Y, Kita S, Koyama Y, Fukuda S, Takeda H, Takahashi M, et al. Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. JCI insight. 2018;3.

  67. 67.

    Tsuchiya A, Takeuchi S, Watanabe T, Yoshida T, Nojiri S, Ogawa M, et al. Mesenchymal stem cell therapies for liver cirrhosis: MSCs as “conducting cells” for improvement of liver fibrosis and regeneration. Inflamm Regen. 2019;39:18.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. 68.

    Shen T, Zheng QQ, Shen J, Li QS, Song XH, Luo HB, et al. Effects of adipose-derived mesenchymal stem cell exosomes on corneal stromal fibroblast viability and extracellular matrix synthesis. Chin Med J (Engl). 2018;131:704–12.

    Article  Google Scholar 

  69. 69.

    Cooper DR, Wang C, Patel R, Trujillo A, Patel NA, Prather J, et al. Human adipose-derived stem cell conditioned media and Exosomes containing MALAT1 promote human dermal fibroblast migration and ischemic wound healing. Adv Wound Care. 2018;7:299–308.

    Article  Google Scholar 

  70. 70.

    Zhang W, Bai X, Zhao B, Li Y, Zhang Y, Li Z, et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Exp Cell Res. 2018;370:333–42.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Liu X, Wang S, Wu S, Hao Q, Li Y, Guo Z, et al. Exosomes secreted by adipose-derived mesenchymal stem cells regulate type i collagen metabolism in fibroblasts from women with stress urinary incontinence. Stem Cell Res Ther. 2018;9:1–10.

    Article  Google Scholar 

  72. 72.

    Zhang X, Chen L, Xiao B, Liu H, Su Y. Circ_0075932 in adipocyte-derived exosomes induces inflammation and apoptosis in human dermal keratinocytes by directly binding with PUM2 and promoting PUM2-mediated activation of AuroraA/NF-κB pathway. Biochem Biophys Res Commun. 2019;511:551–8.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Arnold M, Pandeya N, Byrnes G, Renehan AG, Stevens GA, Ezzati M, et al. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 2015;16:36–46.

    PubMed  Article  Google Scholar 

  74. 74.

    Castaño C, Kalko S, Novials A, Párrizas M. Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc Natl Acad Sci U S A. 2018;115:12158–63.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. 75.

    Pardo F, Villalobos-Labra R, Sobrevia B, Toledo F, Sobrevia L. Extracellular vesicles in obesity and diabetes mellitus. Mol. Aspects Med. 2018.

  76. 76.

    Stolarczyk E. Adipose tissue inflammation in obesity: a metabolic or immune response? Curr Opin Pharmacol. 2017;37:35–40.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Klöting N, Blüher M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord. 2014. p. 277–87.

  78. 78.

    Li C, Qu L, Farragher C, Vella A, Zhou B. MicroRNA regulated macrophage activation in obesity. J Transl Intern Med. 2019;7:46–52.

    Article  Google Scholar 

  79. 79.

    Sharif O, Brunner JS, Vogel A, Schabbauer G. Macrophage rewiring by nutrient associated PI3K dependent pathways. Front Immunol. 2019.

  80. 80.

    Deiuliis JA, Syed R, Duggineni D, Rutsky J, Rengasamy P, Zhang J, et al. Visceral adipose MicroRNA 223 is upregulated in human and murine obesity and modulates the inflammatory phenotype of macrophages. PLoS One. 2016;11:1–15.

    Article  CAS  Google Scholar 

  81. 81.

    Du W, Su L, Zhang N, Wang H. Exosomes derived from preadipocytes improve osteogenic differentiation, potentially via reduced miR-223 expression. Mol Med Rep. 2019;19:951–8.

    CAS  PubMed  Google Scholar 

  82. 82.

    Zhang Y, Mei H, Chang X, Chen F, Zhu Y, Han X. Adipocyte-derived microvesicles from obese mice induce M1 macrophage phenotype through secreted miR-155. J Mol Cell Biol. 2016;8:505–17.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Bae Y, Kim Y, Lee H, Kim H, Jeon JS, Noh H, et al. Bariatric surgery alters microRNA content of circulating Exosomes in patients with obesity. Obesity. 2019;27:264–71.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Cui X, You L, Zhu L, Wang X, Zhou Y, Li Y, et al. Change in circulating microRNA profile of obese children indicates future risk of adult diabetes. Metabolism. 2018;78:95–105.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Kim NH, Ahn J, Choi YM, Son HJ, Choi WH, Cho HJ, et al. Differential circulating and visceral fat microRNA expression of non-obese and obese subjects. Clin Nutr. 2020;39:910–6.

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Yu Y, Du H, Wei S, Feng L, Li J, Yao F, et al. Adipocyte-derived exosomal MiR-27a induces insulin resistance in skeletal muscle through repression of PPARγ. Theranostics. 2018;8:2171–88.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, et al. Adipose tissue macrophage-derived exosomal mirnas can modulate in vivo and in vitro insulin sensitivity. Cell. 2017;171:372–384.e12.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Thompson MD, Cismowski MJ, Serpico M, Pusateri A, Brigstock DR. Elevation of circulating microRNA levels in obese children compared to healthy controls. Clin Obes. 2017;7:216–21.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Dang SY, Leng Y, Wang ZX, Xiao X, Zhang X, Wen T, et al. Exosomal transfer of obesity adipose tissue for decreased miR-141-3p mediate insulin resistance of hepatocytes. Int J Biol Sci. 2019;15:351–68.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Lee JE, Moon PG, Lee IK, Baek MC. Proteomic analysis of extracellular vesicles released by adipocytes of Otsuka long-Evans Tokushima fatty (OLETF) rats. Protein J. 2015;34:220–35.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Blüher M. Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Pract Res Clin Endocrinol Metab. 2013;27:163–77.

    PubMed  Article  CAS  Google Scholar 

  92. 92.

    Zaki MB, Abulsoud AI, Elsisi AM, Doghish AS, Mansour OAE, Amin AI, et al. Potential role of circulating microRNAs (486-5p, 497, 509-5p and 605) in metabolic syndrome Egyptian male patients. Diabetes, Metab Syndr Obes Targets Ther. 2019;12:601–11.

    CAS  Article  Google Scholar 

  93. 93.

    El-Dawy khalifa, Ali H, Abdo S. Characterization of circulating exosomal micrornas and its role as biomarkers for metabolic syndrome. Zagazig Vet J. 2019;47:78–90.

  94. 94.

    Pek SLT, Sum CF, Lin MX, Cheng AKS, Wong MTK, Lim SC, et al. Circulating and visceral adipose miR-100 is down-regulated in patients with obesity and type 2 diabetes. Mol Cell Endocrinol. 2016;427:112–23.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Parr EB, Camera DM, Burke LM, Phillips SM, Coffey VG, Hawley JA. Circulating microrna responses between “high” and “low” responders to a 16-Wk diet and exercise weight loss intervention. PLoS One. 2016;11:1–14.

    Article  CAS  Google Scholar 

  96. 96.

    Iacomino G, Russo P, Marena P, Lauria F, Venezia A, Ahrens W, et al. Circulating microRNAs are associated with early childhood obesity: Results of the I.Family Study. Genes Nutr. 2019;14:2.

  97. 97.

    Witczak JK, Min T, Prior SL, Stephens JW, James PE, Rees A. Bariatric surgery is accompanied by changes in extracellular vesicle-associated and plasma fatty acid binding protein 4. Obes Surg. 2018;28:767–74.

    PubMed  Article  Google Scholar 

  98. 98.

    Santamaria-Martos F, Benitez ID, Latorre J, Lluch A, Moreno-Navarrete JM, Sabater M, et al. Comparative and functional analysis of plasma membrane-derived extracellular vesicles from obese vs. nonobese women. Clin Nutr. 2020;39:1067–76.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Sapp RM, Shill DD, Dash C, Hicks JC, Adams-Campbell LL, Hagberg JM. Circulating microRNAs and endothelial cell migration rate are associated with metabolic syndrome and fitness level in postmenopausal African American women. Physiol Rep. 2019;7:e14173.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100.

    Rubio DS, Pastor L, Lazaro J, Marin JM, Aragón IIS. Effect of CPAP on circulating exosomal MicroRNAs in patients with morbid obesity and obstructive sleep apnea ( OSA ). 174:5603.

  101. 101.

    Donghui T, Shuang B, Xulong L, Meng Y, Yujing G, Yujie H, et al. Improvement of microvascular endothelial dysfunction induced by exercise and diet is associated with microRNA-126 in obese adolescents. Microvasc Res. 2019;123:86–91.

    PubMed  Article  CAS  Google Scholar 

  102. 102.

    Li X, Ballantyne LL, Yu Y, Funk CD. Perivascular adipose tissue–derived extracellular vesicle miR-221-3p mediates vascular remodeling. FASEB J. 2019;33:12704–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Chitti SV, Fonseka P, Mathivanan S. Emerging role of extracellular vesicles in mediating cancer cachexia. Biochem Soc Trans. 2018;46:1129–36.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Sun S, Wu Q, Li J, Li Z, Sun S, Zhu S, et al. Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression. J Exp Clin Cancer Res. 2019;38:1–20.

    CAS  Article  Google Scholar 

  105. 105.

    Wu Q, Li B, Li Z, Li J, Sun S, Sun S. Cancer-associated adipocytes: key players in breast cancer progression. Oncol: J. Hematol; 2019.

    Google Scholar 

  106. 106.

    Au Yeung CL, Co NN, Tsuruga T, Yeung TL, Kwan SY, Leung CS, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 2016;7:1–14.

    Google Scholar 

  107. 107.

    De Lope LR, Alcíbar OL, López AA, Hergueta-Redondo M, Peinado H. Tumour–adipose tissue crosstalk: fuelling tumour metastasis by extracellular vesicles. Philos Trans R Soc B Biol Sci. 2018;373.

  108. 108.

    Sagar G, Sah RP, Javeed N, Dutta SK, Smyrk TC, Lau JS, et al. Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut. 2016;65:1165–74.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Casadei L, Calore F, Braggio DA, Zewdu A, Deshmukh AA, Fadda P, et al. MDM2 derived from dedifferentiated liposarcoma extracellular vesicles induces MMP2 production from preadipocytes. Cancer Res. 2019;79:4911–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Liu C, Su C. Design strategies and application progress of therapeutic exosomes. Theranostics. 2019. p. 1015–28.

  111. 111.

    Sun Y, Shi H, Yin S, Ji C, Zhang X, Zhang B, et al. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano. 2018;12:7613–28.

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Li F, Li H, Jin X, Zhang Y, Kang X, Zhang Z, et al. Adipose-specific knockdown of Sirt1 results in obesity and insulin resistance by promoting exosomes release. Cell Cycle. 2019;18:2067–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Safdar A, Saleem A, Tarnopolsky MA. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat. Rev. Endocrinol. 2016. p. 504–17.

  114. 114.

    Yu M, Tsai SF, Kuo YM. The therapeutic potential of anti-inflammatory exerkines in the treatment of atherosclerosis. Int J Mol Sci. 2017;18.

  115. 115.

    Safdar A, Tarnopolsky MA. Exosomes as mediators of the systemic adaptations to endurance exercise. Cold Spring Harb Perspect Med. 2018;8.

  116. 116.

    Son JS, Zhao L, Chen Y, Chen K, Chae SA, De Avila JM, et al. Maternal exercise via exerkine apelin enhances brown adipogenesis and prevents metabolic dysfunction in offspring mice. Sci Adv. 2020;6:eaaz0359.

    PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Yu X, Harris SL, Levine AJ. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 2006;66:4795–801.

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12:421.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284:34211–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release. 2014;192:262–70.

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35:2383–90.

    CAS  PubMed  Article  Google Scholar 

Download references


This work was partially supported by grants from the National Cancer Institute of US National Institutes of Health (R01CA212609), and Purdue University Center for Cancer Research (P30CA023168).

Author information



Corresponding author

Correspondence to Shihuan Kuang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest Editors: Meng Deng and Shihuan Kuang

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quan, M., Kuang, S. Exosomal Secretion of Adipose Tissue during Various Physiological States. Pharm Res 37, 221 (2020). https://doi.org/10.1007/s11095-020-02941-6

Download citation

Key Words

  • adipocyte
  • extracellular vesicles
  • obesity
  • metabolism
  • drug delivery