Ternary Polypeptide Nanoparticles with Improved Encapsulation, Sustained Release, and Enhanced In Vitro Efficacy of Carfilzomib



To develop a new nanoparticle formulation for a proteasome inhibitor Carfilzomib (CFZ) to improve its stability and efficacy for future in vivo applications.


CFZ-loaded ternary polypeptide nanoparticles (CFZ/tPNPs) were prepared by using heptakis(6-amino-6-deoxy)-β-cyclodextrin(hepta-hydrochloride) (HaβCD) and azido-poly(ethylene glycol)-block-poly(L-glutamic acid sodium salt) (N3-PEG-PLE). The process involved ternary (hydrophobic/ionic/supramolecular) interactions in three steps: 1) CFZ was entrapped in the cavity of HaβCD by hydrophobic interaction, 2) the drug-cyclodextrin inclusion complexes were mixed with N3-PEG-PLE to form polyion complex nanoparticles, and 3) the nanoparticles were modified with fluorescent dyes (AFDye 647) for imaging and/or epithelial cell adhesion molecule (EpCAM) antibodies for cancer cell targeting. CFZ/tPNPs were characterized for particle size, surface charge, drug release, stability, intracellular uptake, proteasome inhibition, and in vitro cytotoxicity.


tPNPs maintained an average particle size of 50 nm after CFZ entrapment, EpCAM conjugation, and freeze drying. tPNPs achieved high aqueous solubility of CFZ (>1 mg/mL), sustained drug release (t1/2 = 6.46 h), and EpCAM-mediated cell targeting, which resulted in increased intracellular drug accumulation, prolonged proteasome inhibition, and enhanced cytotoxicity of CFZ in drug-resistant DLD-1 colorectal cancer cells.


tPNPs improved stability and efficacy of CFZ in vitro, and these results potentiate effective cancer treatment using CFZ/tPNPs in future vivo studies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10





EpCAM-conjugated CFZ/tPNPs


tPNPs entrapping CFZ


Epithelial cell adhesion molecule


Fluorescent CFZ/tPNPs


tPNPs modified with fluorescent dye AFDye 647




Azido-poly(ethylene glycol)-block-poly(L-glutamic acid sodium salt)


Ternary polypeptide nanoparticles


  1. 1.

    Kane RC, Bross PF, Farrell AT, Pazdur R. Velcade: US FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist. 2003;8(6):508–13.

    Article  Google Scholar 

  2. 2.

    Stewart AK, Rajkumar SV, Dimopoulos MA, Masszi T, Špička I, Oriol A, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372(2):142–52.

  3. 3.

    Jagannath S, Vij R, Stewart AK, Trudel S, Jakubowiak AJ, Reiman T, et al. An open-label single-arm pilot phase II study (PX-171-003-A0) of low-dose, single-agent carfilzomib in patients with relapsed and refractory multiple myeloma. Clin Lymphoma Myeloma Leukemia. 2012;12(5):310–8.

  4. 4.

    Jakubowiak AJ, Dytfeld D, Griffith KA, Lebovic D, Vesole DH, Jagannath S, Al-Zoubi A, Anderson T, Nordgren B, Detweiler-Short K. A phase 1/2 study of carfilzomib in combination with lenalidomide and low-dose dexamethasone as a frontline treatment for multiple myeloma. Blood. 2012;120(9):1801–9.

  5. 5.

    Yang W, Monroe J, Zhang Y, George D, Bremer E, Li H. Proteasome inhibition induces both pro-and anti-cell death pathways in prostate cancer cells. Cancer Lett. 2006;243(2):217–27.

    CAS  Article  Google Scholar 

  6. 6.

    Ao L, Wu Y, Kim D, Jang ER, Kim K, Lee D-m, et al. Development of peptide-based reversing agents for p-glycoprotein-mediated resistance to carfilzomib. Mol Pharm. 2012;9(8):2197–205.

  7. 7.

    Papadopoulos KP, Burris HA, Gordon M, Lee P, Sausville EA, Rosen PJ, et al. A phase I/II study of carfilzomib 2–10-min infusion in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2013;72(4):861–8.

  8. 8.

    Hanada M, Sugawara K, Kaneta K, Toda S, Nishiyama Y, Tomita K, et al. Epoxomicin, a new antitumor agent of microbial origin. J Antibiotics. 1992;45(11):1746–52.

  9. 9.

    Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci. 1999;96(18):10403–8.

    CAS  Article  Google Scholar 

  10. 10.

    Lub S, Maes K, Menu E, De Bruyne E, Vanderkerken K, Van Valckenborgh E. Novel strategies to target the ubiquitin proteasome system in multiple myeloma. Oncotarget. 2016;7(6):6521–37.

    Article  Google Scholar 

  11. 11.

    Kortuem KM, Stewart AK. Carfilzomib. Blood J Am Soc Hematol. 2013;121(6):893–7.

    CAS  Google Scholar 

  12. 12.

    Yang J, Wang Z, Fang Y, Jiang J, Zhao F, Wong H, et al. Pharmacokinetics, pharmacodynamics, metabolism, distribution, and excretion of carfilzomib in rats. Drug Metab Dispos. 2011;39(10):1873–82.

  13. 13.

    Gutman D, Morales AA, Boise LH. Acquisition of a multidrug-resistant phenotype with a proteasome inhibitor in multiple myeloma. Leukemia. 2009;23(11):2181–3.

    CAS  Article  Google Scholar 

  14. 14.

    Ivancsits D, Nimmanapali R, Sun M, Shenk K, Demo SD, Bennett MK, Dalton WS, Alsina M. The proteasome inhibitor PR-171 inhibits cell growth, induces apoptosis, and overcomes De novo and acquired drug resistance in human multiple myeloma cells. In: Am Soc Hematol. 2005.

  15. 15.

    Verbrugge SE, Assaraf YG, Dijkmans BA, Scheffer GL, Al M, den Uyl D, et al. Inactivating PSMB5 mutations and P-glycoprotein (multidrug resistance-associated protein/ATP-binding cassette B1) mediate resistance to proteasome inhibitors: ex vivo efficacy of (immuno) proteasome inhibitors in mononuclear blood cells from patients with rheumatoid arthritis. J Pharmacol Exp Ther. 2012;341(1):174–82.

  16. 16.

    Park JE, Park J, Jun Y, Oh Y, Ryoo G, Jeong Y-S, et al. Expanding therapeutic utility of carfilzomib for breast cancer therapy by novel albumin-coated nanocrystal formulation. J Control Release. 2019;302:148–59.

  17. 17.

    Lewis E, Schwonek P, Dalziel S, Jumaa M. Cyclodextrin complexation methods for formulating peptide proteasome inhibitors. US patent application 2013;13/614,829.

  18. 18.

    Wang Z, Yang J, Kirk C, Fang Y, Alsina M, Badros A, et al. Clinical pharmacokinetics, metabolism, and drug-drug interaction of carfilzomib. Drug Metab Dispos. 2013;41(1):230–7.

  19. 19.

    Wang Z, Fang Y, Teague J, Wong H, Morisseau C, Hammock BD, et al. In vitro metabolism of oprozomib, an oral proteasome inhibitor: role of epoxide hydrolases and cytochrome P450s. Drug Metab Dispos. 2017;45(7):712–20.

  20. 20.

    Lee MJ, Bhattarai D, Yoo J, Miller Z, Park JE, Lee S, et al. Development of novel epoxyketone-based proteasome inhibitors as a strategy to overcome cancer resistance to carfilzomib and bortezomib. J Med Chem. 2019;62(9):4444–55.

  21. 21.

    Besse A, Stolze S, Rasche L, Weinhold N, Morgan G, Kraus M, et al. Carfilzomib resistance due to ABCB1/MDR1 overexpression is overcome by nelfinavir and lopinavir in multiple myeloma. Leukemia. 2018;32(2):391–401.

  22. 22.

    Ao L, Reichel D, Hu D, Jeong H, Kim KB, Bae Y, et al. Polymer micelle formulations of proteasome inhibitor carfilzomib for improved metabolic stability and anticancer efficacy in human multiple myeloma and lung cancer cell lines. J Pharmacol Exp Ther. 2015;355(2):168–73.

  23. 23.

    Park JE, Chun S-E, Reichel D, Min JS, Lee S-C, Han S, Ryoo G, Oh Y, Park S-H, Ryu H-M. Polymer micelle formulation for the proteasome inhibitor drug carfilzomib: Anticancer efficacy and pharmacokinetic studies in mice. PloS one. 2017;12(3):e0173247.

  24. 24.

    Park JE, Chun S-E, Reichel D, Park J, Min JS, Ryoo G, et al. Novel Polymer Micelle and Nanocrystal Formulations for the Proteasome Inhibitor Drug Carfilzomib: Pharmacokinetic and Pharmacodynamic Studies in Human Lung and Breast Cancer Models. FASEB J. 2017;31(1_supplement):822.826–6.

  25. 25.

    Reichel D, Lee MJ, Lee W, Kim KB, Bae Y. Tethered polymer nanoassemblies for sustained carfilzomib release and prolonged suppression of proteasome activity. Ther Deliv. 2016;7(10):665–81.

    CAS  Article  Google Scholar 

  26. 26.

    Ashley JD, Stefanick JF, Schroeder VA, Suckow MA, Alves NJ, Suzuki R, et al. Liposomal carfilzomib nanoparticles effectively target multiple myeloma cells and demonstrate enhanced efficacy in vivo. J Control Release. 2014;196:113–21.

  27. 27.

    Ashley JD, Quinlan CJ, Schroeder VA, Suckow MA, Pizzuti VJ, Kiziltepe T, et al. Dual carfilzomib and doxorubicin–loaded liposomal nanoparticles for synergistic efficacy in multiple myeloma. Mol Cancer Ther. 2016;15(7):1452–9.

  28. 28.

    Trzpis M, McLaughlin PM, de Leij LM, Harmsen MC. Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am J Pathol. 2007;171(2):386–95.

    CAS  Article  Google Scholar 

  29. 29.

    Maetzel D, Denzel S, Mack B, Canis M, Went P, Benk M, et al. Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol. 2009;11(2):162–71.

  30. 30.

    Patriarca C, Macchi RM, Marschner AK, Mellstedt H. Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treat Rev. 2012;38(1):68–75.

    CAS  Article  Google Scholar 

  31. 31.

    Seimetz D, Lindhofer H, Bokemeyer C. Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM× anti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev. 2010;36(6):458–67.

    CAS  Article  Google Scholar 

  32. 32.

    Armstrong A, Eck SL. EpCAM: a new therapeutic target for an old cancer antigen. Cancer Biol Therapy. 2003;2(4):320–5.

    CAS  Article  Google Scholar 

  33. 33.

    Lugli A, Iezzi G, Hostettler I, Muraro M, Mele V, Tornillo L, et al. Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer. Br J Cancer. 2010;103(3):382–90.

  34. 34.

    Reichel D, Rychahou P, Bae Y. Polymer nanoassemblies with solvato-and halo-fluorochromism for drug release monitoring and metastasis imaging. Ther Deliv. 2015;6(10):1221–37.

    CAS  Article  Google Scholar 

  35. 35.

    Reichel D, Bae Y. Comparison of dialysis-and Solvatofluorochromism-based methods to determine drug release rates from polymer Nanoassemblies. Pharm Res. 2017;34(2):394–407.

    CAS  Article  Google Scholar 

  36. 36.

    Malich G, Markovic B, Winder C. The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology. 1997;124(3):179–92.

    CAS  Article  Google Scholar 

  37. 37.

    Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly (ethylene glycol)-poly (amino acid) block copolymers. Adv Drug Deliv Rev. 2009;61(10):768–84.

    CAS  Article  Google Scholar 

  38. 38.

    McCormack PL. Carfilzomib. Carfilzomib Drugs. 2012;72(15):2023–32.

    CAS  Article  Google Scholar 

  39. 39.

    Siegel DS, Martin T, Wang M, Vij R, Jakubowiak AJ, Lonial S, et al. A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood J Am Soc Hematol. 2012;120(14):2817–25.

  40. 40.

    Dimopoulos MA, Moreau P, Palumbo A, Joshua D, Pour L, Hájek R, et al. Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): a randomised, phase 3, open-label, multicentre study. Lancet Oncol. 2016;17(1):27–38.

  41. 41.

    Moreau P, Joshua D, Chng W, Palumbo A, Goldschmidt H, Hájek R, et al. Impact of prior treatment on patients with relapsed multiple myeloma treated with carfilzomib and dexamethasone vs bortezomib and dexamethasone in the phase 3 ENDEAVOR study. Leukemia. 2017;31(1):115–22.

  42. 42.

    Khan ML, Stewart AK. Carfilzomib: a novel second-generation proteasome inhibitor. Future Oncol. 2011;7(5):607–12.

    CAS  Article  Google Scholar 

  43. 43.

    Demo SD, Kirk CJ, Aujay MA, Buchholz TJ, Dajee M, Ho MN, et al. Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res. 2007;67(13):6383–91.

  44. 44.

    Pawarode A, Goldstein S, Couriel DR, Braun T, Magenau JM, Riwes MM, Parkin B, Radojcic V, Frame D, Choi S. Phase 1 Study of Carfilzomib for the Prevention of Relapse and Graft-Versus-Host Disease in Allogeneic Hematopoietic Cell Transplantation for High-Risk Hematologic Malignancies.American Society of Hematology. 2015;1907.

  45. 45.

    Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther. 2006;112(3):630–48.

    CAS  Article  Google Scholar 

  46. 46.

    Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58(15):1688–713.

    CAS  Article  Google Scholar 

  47. 47.

    Chaubal MV, Popescu C. Conversion of nanosuspensions into dry powders by spray drying: a case study. Pharm Res. 2008;25(10):2302–8.

    CAS  Article  Google Scholar 

  48. 48.

    Wang L, Ma Y, Gu Y, Liu Y, Zhao J, Yan B, et al. Cryoprotectant choice and analyses of freeze-drying drug suspension of nanoparticles with functional stabilisers. J Microencapsul. 2018;35(3):241–8.

  49. 49.

    Alihosseini F, Ghaffari S, Dabirsiaghi AR, Haghighat S. Freeze-drying of ampicillin solid lipid nanoparticles using mannitol as cryoprotectant. Brazilian J Pharmaceut Sci. 2015;51(4):797–802.

    Article  Google Scholar 

  50. 50.

    Fonte P, Soares S, Sousa F, Costa A, Seabra V, Reis S, et al. Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Biomacromolecules. 2014;15(10):3753–65.

  51. 51.

    Sonner C, Maa YF, Lee G. Spray-freeze-drying for protein powder preparation: particle characterization and a case study with trypsinogen stability. J Pharm Sci. 2002;91(10):2122–39.

    CAS  Article  Google Scholar 

  52. 52.

    Lee MK, Kim MY, Kim S, Lee J. Cryoprotectants for freeze drying of drug nano-suspensions: effect of freezing rate. J Pharm Sci. 2009;98(12):4808–17.

    CAS  Article  Google Scholar 

  53. 53.

    Abdelwahed W, Degobert G, Fessi H. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Eur J Pharm Biopharm. 2006;63(2):87–94.

    CAS  Article  Google Scholar 

  54. 54.

    Hirsjärvi S, Peltonen L, Kainu L, Hirvonen J. Freeze-drying of low molecular weight poly (L-lactic acid) nanoparticles: effect of cryo-and lyoprotectants. J Nanosci Nanotechnol. 2006;6(9–10):3110–7.

    Article  Google Scholar 

  55. 55.

    De Jaeghere F, Allémann E, Leroux J-C, Stevels W, Feijen J, Doelker E, et al. Formulation and lyoprotection of poly (lactic acid-co-ethylene oxide) nanoparticles: influence on physical stability and in vitro cell uptake. Pharm Res. 1999;16(6):859–66.

  56. 56.

    Fàbregas A, Miñarro M, García-Montoya E, Pérez-Lozano P, Carrillo C, Sarrate R, et al. Impact of physical parameters on particle size and reaction yield when using the ionic gelation method to obtain cationic polymeric chitosan–tripolyphosphate nanoparticles. Int J Pharm. 2013;446(1–2):199–204.

    Article  Google Scholar 

  57. 57.

    Barenholz YC. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34.

    CAS  Article  Google Scholar 

  58. 58.

    Rychahou P, Bae Y, Reichel D, Zaytseva YY, Lee EY, Napier D, et al. Colorectal cancer lung metastasis treatment with polymer–drug nanoparticles. J Control Release. 2018;275:85–91.

    CAS  Article  Google Scholar 

  59. 59.

    Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–51.

    CAS  Article  Google Scholar 

  60. 60.

    Danhier F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release. 2016;244:108–21.

    CAS  Article  Google Scholar 

  61. 61.

    Song W, Luo Y, Zhao Y, Liu X, Zhao J, Luo J, et al. Magnetic nanobubbles with potential for targeted drug delivery and trimodal imaging in breast cancer: an in vitro study. Nanomedicine. 2017;12(9):991–1009.

    CAS  Article  Google Scholar 

  62. 62.

    Lamprecht A, Ubrich N, Yamamoto H, Schäfer U, Takeuchi H, Maincent P, et al. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J Pharmacol Exp Ther. 2001;299(2):775–81.

    CAS  PubMed  Google Scholar 

  63. 63.

    Mou X, Ali Z, Li S, He N. Applications of magnetic nanoparticles in targeted drug delivery system. J Nanosci Nanotechnol. 2015;15(1):54–62.

    CAS  Article  Google Scholar 

  64. 64.

    Went P, Vasei M, Bubendorf L, Terracciano L, Tornillo L, Riede U, et al. Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. Br J Cancer. 2006;94(1):128–35.

    CAS  Article  Google Scholar 

  65. 65.

    Riz I, Hawley TS, Hawley RG. KLF4-SQSTM1/p62-associated prosurvival autophagy contributes to carfilzomib resistance in multiple myeloma models. Oncotarget. 2015;6(17):14814–31.

    Article  Google Scholar 

  66. 66.

    Zang Y, Kirk CJ, Johnson DE. Carfilzomib and oprozomib synergize with histone deacetylase inhibitors in head and neck squamous cell carcinoma models of acquired resistance to proteasome inhibitors. Cancer Biol Therapy. 2014;15(9):1142–52.

    CAS  Article  Google Scholar 

  67. 67.

    Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem. 2009;17(8):2950–62.

    CAS  Article  Google Scholar 

  68. 68.

    Bae Y, Kataoka K. Significant enhancement of antitumor activity and bioavailability of intracellular pH-sensitive polymeric micelles by folate conjugation. J Controlled Release: Off J Controlled Release Soc. 2006;116(2):e49–50.

    CAS  Article  Google Scholar 

  69. 69.

    Bae Y, Nishiyama N, Kataoka K. In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug Chem. 2007;18(4):1131–9.

    CAS  Article  Google Scholar 

  70. 70.

    Bae Y, Jang W-D, Nishiyama N, Fukushima S, Kataoka K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol BioSyst. 2005;1(3):242–50.

    CAS  Article  Google Scholar 

Download references


PA thanks Jasmine Woods for insights on optimizing the conditions for performing SDS-PAGE.

Author information



Corresponding author

Correspondence to Younsoo Bae.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Agbana, P., Lee, M.J., Rychahou, P. et al. Ternary Polypeptide Nanoparticles with Improved Encapsulation, Sustained Release, and Enhanced In Vitro Efficacy of Carfilzomib. Pharm Res 37, 213 (2020). https://doi.org/10.1007/s11095-020-02922-9

Download citation


  • cell targeting
  • colorectal cancer
  • drug delivery
  • drug resistance
  • polypeptide nanoparticles
  • proteasome inhibitors