In Vitro Evaluation of Clinical Candidates of γ-Secretase Inhibitors: Effects on Notch Inhibition and Promoting Beige Adipogenesis and Mitochondrial Biogenesis

Abstract

Purpose

Inhibition of Notch signaling has been recently demonstrated to promote beige adipocyte biogenesis. However, most γ-secretase inhibitors (GSIs) used to achieve pharmacological inhibition of Notch signaling are at the basic research or preclinical stage, limiting the translation of fundamental findings into clinical practice. This present study aimed to evaluate the potential of several clinical candidates of GSIs as browning agents for the treatment of obesity.

Methods

Seven GSIs that are clinical candidates for the treatment of Alzheimer’s disease or cancer were selected and their impacts on Notch inhibition as well as promoting beige biogenesis were compared using in vitro culture of 3T3-L1 preadipocytes.

Results

Four compounds (i.e.RO4929097, PF-03084014, LY3039478, and BMS-906024) that efficiently inhibited the expression of Notch target genes in 3T3-L1 preadipocytes were identified. Moreover, these compounds were optimized for dose-dependent effects at three gradient concentrations (0.5, 1, and 10 μM) to promote beige adipogenesis and mitochondrial biogenesis in 3T3-L1 preadipocytes without causing severe cytotoxicity.

Conclusions

Our findings not only highlight the potential of cross-therapeutic application of these GSIs for obesity treatment via inhibition of γ-secretase-mediated processing of Notch signaling, but also provide important experimental evidence to support further design and development of clinically translatable Notch-inhibiting drug delivery systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

BAT:

Brown adipose tissues

C/EBPs:

CCAAT/enhancer binding protein family proteins

CIDEA:

Cell death-inducing DNA fragmentation factor alpha-like effector A

COX5B:

Cytochrome c oxidase subunit 5B

DAPT:

(N-[N-(3,5-Difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester)

DIO2:

Type 2 deiodinase

FABP4:

Fatty acid binding protein 4

GSIs:

γ-secretase inhibitors

NICD:

Notch intracellular domain

PPARs:

Peroxisomal proliferator-activated receptor family proteins

PPARGC1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PRDM16:

PR domain containing 16

RBPJ:

Recombination signal binding protein for immunoglobulin kappa J region

TMEM26:

Transmembrane protein 26

UCP1:

Uncoupling protein 1

WAT:

White adipose tissue

References

  1. 1.

    Smith KB, Smith MS. Obesity statistics. Prim care - Clin off Pract. Elsevier. 2016;43:121–35.

    Google Scholar 

  2. 2.

    Huang D, Deng M, Kuang S. Polymeric carriers for controlled drug delivery in obesity treatment. Trends Endocrinol Metab Elsevier. 2019;30:974–89.

    CAS  Article  Google Scholar 

  3. 3.

    Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature Nature Publishing Group. 2006;444:847–53.

    CAS  Google Scholar 

  4. 4.

    Lshibashi J, Seale P. Beige can be slimming. Science (80- ). American Association for the Advancement of Science. 2010;328:1113–4.

    Article  Google Scholar 

  5. 5.

    Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell Elsevier. 2012;150:366–76.

    CAS  Google Scholar 

  6. 6.

    Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science (80- ). American Association for the Advancement of Science. 1999;284:770–6.

    CAS  Article  Google Scholar 

  7. 7.

    Luo D, Renault VM, Rando TA. The regulation of notch signaling in muscle stem cell activation and postnatal myogenesis. Semin Cell Dev Biol Elsevier. 2005;16:612–22.

    CAS  Article  Google Scholar 

  8. 8.

    Urs S, Turner B, Tang Y, Rostama B, Small D, Liaw L. Effect of soluble Jagged1-mediated inhibition of notch signaling on proliferation and differentiation of an adipocyte progenitor cell model. Adipocyte Taylor & Francis. 2012;1:46–57.

    CAS  Article  Google Scholar 

  9. 9.

    Kadesch T. Notch signaling: the demise of elegant simplicity. Curr Opin Genet Dev Elsevier. 2004;14:506–12.

    CAS  Article  Google Scholar 

  10. 10.

    Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. Nature Publishing Group. 1998;393:382–6.

    CAS  Google Scholar 

  11. 11.

    Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol rev. American Physiological Society Bethesda. MD. 1998;78:783–809.

    CAS  Google Scholar 

  12. 12.

    Lai PY, Tsai C Bin, Tseng MJ. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes. Biochem Biophys res Commun. Elsevier; 2013;430:1132–9.

  13. 13.

    Osathanon T, Subbalekha K, Sastravaha P, Pavasant P. Notch signalling inhibits the adipogenic differentiation of single-cell-derived mesenchymal stem cell clones isolated from human adipose tissue. Cell Biol Int Wiley Online Library. 2012;36:1161–70.

    CAS  Article  Google Scholar 

  14. 14.

    Espinoza I, Miele L. Notch inhibitors for cancer treatment. Pharmacol Ther Elsevier. 2013;139:95–110.

    CAS  Article  Google Scholar 

  15. 15.

    Woo HN, Park JS, Gwon AR, Arumugam TV, Jo DG. Alzheimer’s disease and notch signaling. Biochem Biophys res Commun. Elsevier. 2009;390:1093–7.

    CAS  Google Scholar 

  16. 16.

    SpringWorks Therapeutics. No Title [Internet]. 2020. Available from: clinicaltrials.gov/ct2/show/NCT03785964

  17. 17.

    Bi P, Shan T, Liu W, Yue F, Yang X, Liang XR, et al. Inhibition of notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat Med. 2014;20:911–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Jiang C, Cano-Vega MA, Yue F, Kuang L, Narayanan N, Uzunalli G, et al. Dibenzazepine-Loaded Nanoparticles Induce Local Browning of White Adipose Tissue to Counteract Obesity. Mol Ther. Elsevier Ltd. 2017;25:1718–29.

    CAS  Article  Google Scholar 

  19. 19.

    Wei P, Walls M, Qiu M, Ding R, Denlinger RH, Wong A, et al. Evaluation of selective γ-secretase inhibitor PF-03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design. Mol Cancer Ther AACR. 2010;9:1618–28.

    CAS  Article  Google Scholar 

  20. 20.

    Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of innate and adaptive immunity by TGFβ. Adv Immunol Nature Publishing Group. 2017;134:137–233.

    CAS  Article  Google Scholar 

  21. 21.

    Gridley T. Notch signaling in the vasculature. Curr Top Dev Biol. Elsevier; 2010. p. 277–309.

  22. 22.

    Mourikis P, Sambasivan R, Castel D, Rocheteau P, Bizzarro V, Tajbakhsh S. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells Wiley Online Library. 2012;30:243–52.

    CAS  Google Scholar 

  23. 23.

    Garcés C, Ruiz-Hidalgo MJ, De Mora JF, Park C, Miele L, Goldstein J, et al. Notch-1 controls the expression of fatty acid-activated transcription factors and is required for adipogenesis. J Biol Chem ASBMB. 1997;272:29729–34.

    Article  Google Scholar 

  24. 24.

    Song BQ, Chi Y, Li X, Du WJ, Han ZB, Tian JJ, et al. Inhibition of notch signaling promotes the Adipogenic differentiation of Mesenchymal stem cells through autophagy activation and PTEN-PI3K/AKT/mTOR pathway. Cell Physiol Biochem Karger Publishers. 2015;36:1991–2002.

    CAS  Article  Google Scholar 

  25. 25.

    Lonetti A, Cappellini A, Spartà AM, Chiarini F, Buontempo F, Evangelisti C, et al. PI3K pan-inhibition impairs more efficiently proliferation and survival of T-cell acute lymphoblastic leukemia cell lines when compared to isoform-selective PI3K inhibitors. Oncotarget. Impact Journals, LLC; 2015;6:10399.

  26. 26.

    Luistro L, He W, Smith M, Packman K, Vilenchik M, Carvajal D, et al. Preclinical profile of a potent γ-secretase inhibitor targeting notch signaling with in vivo efficacy and pharmacodynamic properties. Cancer Res AACR. 2009;69:7672–80.

    CAS  Article  Google Scholar 

  27. 27.

    Kim SJ, Lee HW, Baek JH, Cho YH, Kang HG, Jeong JS, et al. Activation of nuclear PTEN by inhibition of notch signaling induces G2/M cell cycle arrest in gastric cancer. Oncogene Nature Publishing Group. 2016;35:251–60.

    CAS  Google Scholar 

  28. 28.

    Sha J, Li J, Wang W, Pan L, Cheng J, Li L, et al. Curcumin induces G0/G1 arrest and apoptosis in hormone independent prostate cancer DU-145 cells by down regulating notch signaling. Biomed Pharmacother Elsevier. 2016;84:177–84.

    CAS  Article  Google Scholar 

  29. 29.

    Han J, Ma I, Hendzel MJ, Allalunis-Turner J. The cytotoxicity of γ-secretase inhibitor I to breast cancer cells is mediated by proteasome inhibition, not by γ-secretase inhibition. Breast Cancer Res. Springer; 2009;11:R57.

  30. 30.

    Huang D, Narayanan N, Cano-Vega MA, Jia Z, Ajuwon KM, Kuang S, et al. Nanoparticle-Mediated Inhibition of Notch Signaling Promotes Mitochondrial Biogenesis and Reduces Subcutaneous Adipose Tissue Expansion in Pigs. iScience. Elsevier; 2020;23:101167.

  31. 31.

    Ross DA, Rao PK, Kadesch T. Dual roles for the notch target gene Hes-1 in the differentiation of 3T3-L1 Preadipocytes. Mol Cell Biol Am Soc Microbiol. 2004;24:3505–13.

    CAS  Article  Google Scholar 

  32. 32.

    Ross DA, Hannenhalli S, Tobias JW, Cooch N, Shiekhattar R, Kadesch T. Functional analysis of Hes-1 in preadipocytes. Mol Endocrinol Oxford University Press. 2006;20:698–705.

    CAS  Article  Google Scholar 

  33. 33.

    Kajimura S, Seale P, Spiegelman BM. Transcriptional control of brown fat development. Cell Metab Elsevier. 2010;11:257–62.

    CAS  Article  Google Scholar 

  34. 34.

    Shapira SN, Seale P. Transcriptional control of Brown and Beige fat development and function. Obesity Elsevier. 2019;27:13–21.

    CAS  Article  Google Scholar 

  35. 35.

    Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A, Cannon B. UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim Biophys Acta - Bioenerg. Elsevier. 2001;1504:82–106.

    CAS  Google Scholar 

  36. 36.

    Shabalina IG, Petrovic N, deJong JMA, Kalinovich A V., Cannon B, Nedergaard J. UCP1 in Brite/beige adipose tissue mitochondria is functionally thermogenic. Cell rep. Elsevier; 2013;5:1196–203.

  37. 37.

    Huang Y, Yang X, Wu Y, Jing W, Cai X, Tang W, et al. γ-Secretase inhibitor induces adipogenesis of adipose-derived stem cells by regulation of notch and PPAR-γ. cell Prolif. Wiley Online Library. 2010;43:147–56.

    CAS  Google Scholar 

  38. 38.

    Andersen P, Uosaki H, Shenje LT, Kwon C. Non-canonical notch signaling: emerging role and mechanism. Trends Cell Biol Elsevier. 2012;22:257–65.

    CAS  Article  Google Scholar 

  39. 39.

    Sanalkumar R, Dhanesh SB, James J. Non-canonical activation of notch signaling/target genes in vertebrates. Cell Mol Life Sci Springer. 2010;67:2957–68.

    CAS  Article  Google Scholar 

  40. 40.

    Hayward P, Brennan K, Sanders P, Balayo T, DasGupta R, Perrimon N, et al. Notch modulates Wnt signalling by associating with Armadillo /β-catenin and regulating its transcriptional activity. Development The Company of Biologists Ltd. 2005;132:1819–30.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the funding support from the National Institute of Diabetes and Digestive and Kidney Diseases (R43DK115277 to M. D.) and National Cancer Institute (R01CA212609 to S. K.).

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by D. H. and J. Q. The manuscript was drafted by D. H. and revised by M. D. and S. K. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shihuan Kuang or Meng Deng.

Ethics declarations

Declaration of Interests

M. D., D. H., and S. K. have applied for patents related to this study. M. D. is founder of Adipo Therapeutics, a university startup developing polymer technologies for applications in adipocytes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest Editors: Meng Deng and Shihuan Kuang

Electronic supplementary material

ESM 1

(DOCX 7279 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Qiu, J., Kuang, S. et al. In Vitro Evaluation of Clinical Candidates of γ-Secretase Inhibitors: Effects on Notch Inhibition and Promoting Beige Adipogenesis and Mitochondrial Biogenesis. Pharm Res 37, 185 (2020). https://doi.org/10.1007/s11095-020-02916-7

Download citation

Key Words

  • Obesity
  • Notch signaling pathway
  • γ-secretase inhibitor
  • Adipose browning
  • 3T3-L1 preadipocytes