Skip to main content
Log in

Pharmacokinetic Advantage of ASD Device Promote Drug Absorption through the Epicardium

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Due to low therapeutic efficacy and severe adverse reaction of systemic administration for coronary heart disease (CHD) therapy, we designed a novel local target delivery system, called Active hydraulic ventricular Support Drug delivery system (ASD). This study aims to investigate the potential advantages of ASD compared to intrapericardial (IPC) injection and factors affecting drug absorption through epicardium.

Methods

Liposoluble, water soluble and viscous solutions of cyanine 5 (Cy5) fluorescent dye were delivered individually through ASD and IPC in Sprague-Dawley (SD) rats and then tissues were isolated and observed by in vivo imaging system. Atria and ventricles of the heart were taken for the paraffin section and observed under a fluorescence microscope.

Results

The fluorescence intensity of Cy5 injected by ASD distributed in the heart was significantly higher than IPC injection. Whereas, the fluorescence signal spread in other tissues such as lung, liver, spleen, and kidney of ASD groups was much weaker. Moreover, when choosing liposoluble and viscous Cy5, the intensity of the heart turned stronger and fluorescence dye distributed in other tissues was lesser.

Conclusions

The application of ASD device may provide a promising route of drug delivery for CHD. Furthermore, increasing viscosity of the solution and liposolublity of the drug was beneficial to facilitate drug absorption through the epicardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics - 2018 update: a report from the American Heart Association. Circulation. 2018;137:E67–E492.

    PubMed  Google Scholar 

  2. Ferreira-González I. The epidemiology of coronary heart disease. Rev Española Cardiol (English Ed. 2014;67:139–44.

    Google Scholar 

  3. Horio Y, Yasue H, Okumura K, Takaoka K, Matsuyama K, Goto K, et al. Effects of intracoronary injection of acetylcholine on coronary arterial hemodynamics and diameter. Am J Cardiol. 1988;62:887–91.

    CAS  PubMed  Google Scholar 

  4. Williams AR, Trachtenberg B, Velazquez DL, McNiece I, Altman P, Rouy D, et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res. 2011;108:792–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pokushalov E, Romanov A, Chernyavsky A, Larionov P, Terekhov I, Artyomenko S, et al. Efficiency of intramyocardial injections of autologous bone marrow mononuclear cells in patients with ischemic heart failure: a randomized study. J Cardiovasc Transl Res. 2010;3:160–8.

    PubMed  Google Scholar 

  6. Zhu H, Jiang X, Li X, Hu M, Wan W, Wen Y, et al. Intramyocardial delivery of VEGF165 via a novel biodegradable hydrogel induces angiogenesis and improves cardiac function after rat myocardial infarction. Heart Vessel. 2016;31:963–75.

    Google Scholar 

  7. Uchida Y, Yanagisawa-Miwa A, Nakamura F, Yamada K, Tomaru T, Kimura K, et al. Angiogenic therapy of acute myocardial infarction by intrapericardial injection of basic fibroblast growth factor and heparin sulfate: an experimental study. Am Heart J. 1995;130:1182–8.

    CAS  PubMed  Google Scholar 

  8. Laham RJ, Rezaee M, Post M, Xu X, Sellke FW. Intrapericardial administration of basic fibroblast growth factor: myocardial and tissue distribution and comparison with intracoronary and intravenous administration. Catheter Cardiovasc Interv. 2003;58:375–81.

    PubMed  Google Scholar 

  9. Defouilloy C, Meyer G, Slama M, Galy C, Verhaeghe P, Touati G, et al. Intrapericardial fibrinolysis: a useful treatment in the management of purulent pericarditis. Intensive Care Med. 1997;23:117–8.

    CAS  PubMed  Google Scholar 

  10. Bolderman RW, Rob Hermans JJ, Rademakers LM, Jansen TS, Verheule S, Van Der Veen FH, et al. Intrapericardial delivery of amiodarone and sotalol: atrial transmural drug distribution and electrophysiological effects. J Cardiovasc Pharmacol. 2009;54:355–63.

    CAS  PubMed  Google Scholar 

  11. Carvas M, Nascimento BCG, Acar M, Nearing BD, Belardinelli L, Verrier RL. Intrapericardial ranolazine prolongs atrial refractory period and markedly reduces atrial fibrillation inducibility in the intact porcine heart. J Cardiovasc Pharmacol. 2010;55:286–91.

    CAS  PubMed  Google Scholar 

  12. Maslov M, Foianini S, Lovich M. Delivery of drugs, growth factors, genes and stem cells via intrapericardial, epicardial and intramyocardial routes for sustained local targeted therapy of myocardial disease. Expert Opin Drug Deliv. 2017;14:1227–39.

    CAS  PubMed  Google Scholar 

  13. Zhou Xiaohui (2010) Active Hydraulic Ventricular Attaching Support System. United State Patents. https://doi.org/US 9,089,425 B2.

  14. Teo AJT, Mishra A, Park I, Kim YJ, Park WT, Yoon YJ. Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng. 2016;2:454–72.

    CAS  Google Scholar 

  15. Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci Part B Polym Phys. 2011;49:832–64.

    CAS  Google Scholar 

  16. Naveed M, Wenhua L, Gang W, Mohammad IS, Abbas M, Liao X, et al. A novel ventricular restraint device (ASD) repetitively deliver Salvia miltiorrhiza to epicardium have good curative effects in heart failure management. Biomed Pharmacother. 2017;95:701–10.

    PubMed  Google Scholar 

  17. Yue S, Naveed M, Gang W, Chen D, Wang Z, Yu F, et al. Cardiac support device (ASD) delivers bone marrow stem cells repetitively to epicardium has promising curative effects in advanced heart failure. Biomed Microdevices. 2018;20:40.

    PubMed  Google Scholar 

  18. Snoeks TJA, Löwik CWGM, Kaijzel EL. “In vivo” optical approaches to angiogenesis imaging. Angiogenesis. 2010;13:135–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Li X, Mikrani R, Li C, Naveed M, Liu Z, Abbas M, et al. An epicardial delivery of nitroglycerine by active hydraulic ventricular support drug delivery system improves cardiac function in a rat model. Drug Deliv Transl Res. 2020;10:23–33.

    CAS  PubMed  Google Scholar 

  20. Jensen EC. Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec. 2013;296:378–81.

    Google Scholar 

  21. Feldman AT, Wolfe D. Tissue processing and hematoxylin and eosin staining. Methods Mol Biol. 2014;1180:31–43.

    CAS  PubMed  Google Scholar 

  22. Nishida K, Nakakoga Y, Sato N, Kawakami S, Mukai T, Sasaki H, et al. Effect of viscous additives on drug absorption from the liver surface in rats using phenol red as a model. Eur J Pharm Biopharm. 2000;50:397–402.

    CAS  PubMed  Google Scholar 

  23. Sasaki H, Yamamura K, Mukai T, Nishida K, Nakamura J, Nakashima M, et al. Pharmacokinetic prediction of the ocular absorption of an instilled drug with ophthalmic viscous vehicle. Biol Pharm Bull. 2000;23:1352–6.

    CAS  PubMed  Google Scholar 

  24. Dib N, Khawaja H, Varner S, McCarthy M, Campbell A. Cell therapy for cardiovascular disease: a comparison of methods of delivery. J Cardiovasc Transl Res. 2011;4:177–81.

    PubMed  Google Scholar 

  25. Herity NA, Lo ST, Oei F, Lee DP, Ward MR, Filardo SD, et al. Selective regional myocardial infiltration by the percutaneous coronary venous route: a novel technique for local drug delivery. Catheter Cardiovasc Interv. 2000;51:358–63.

    CAS  PubMed  Google Scholar 

  26. Hou D, Youssef EAS, Brinton TJ, Zhang P, Rogers P, Price ET, et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation. 2005;112:I150–6.

    PubMed  Google Scholar 

  27. Ly HQ, Hoshino K, Pomerantseva I, Kawase Y, Yoneyama R, Takewa Y, et al. In vivo myocardial distribution of multipotent progenitor cells following intracoronary delivery in a swine model of myocardial infarction. Eur Heart J. 2009;30:2861–8.

    PubMed  PubMed Central  Google Scholar 

  28. Baek SH, Hrabie JA, Keefer LK, Hou D, Fineberg N, Rhoades R, et al. Augmentation of intrapericardial nitric oxide level by a prolonged-release nitric oxide donor reduces luminal narrowing after porcine coronary angioplasty. Circulation. 2002;105:2779–84.

    CAS  PubMed  Google Scholar 

  29. Llano R, Epstein S, Zhou R, Zhang H, Hamamdzic D, Keane MG, et al. Intracoronary delivery of mesenchymal stem cells at high flow rates after myocardial infarction improves distal coronary blood flow and decreases mortality in pigs. Catheter Cardiovasc Interv. 2009;73:251–7.

    PubMed  PubMed Central  Google Scholar 

  30. Gäbel R, Klopsch C, Furlani D, Yerebakan C, Li W, Ugurlucan M, et al. Single high-dose intramyocardial administration of erythropoietin promotes early intracardiac proliferation, proves safety and restores cardiac performance after myocardial infarction in rats☆. Interact Cardiovasc Thorac Surg. 2009;9:20–5.

    PubMed  Google Scholar 

  31. Gertz ZM, Wilensky RL. Local drug delivery for treatment of coronary and peripheral artery disease. Cardiovasc Ther. 2011;29:e54–66.

    PubMed  Google Scholar 

  32. Garcia JR, Campbell PF, Kumar G, Langberg JJ, Cesar L, Wang L, et al. A minimally invasive, translational method to deliver hydrogels to the heart through the pericardial space. JACC Basic Transl Sci. 2017;2:601–9.

    PubMed  PubMed Central  Google Scholar 

  33. Fukushima S, Campbell NG, Coppen SR, Yamahara K, Yuen AHY, Smolenski RT, et al. Quantitative assessment of initial retention of bone marrow mononuclear cells injected into the coronary arteries. J Hear Lung Transplant. 2011;30:227–33.

    Google Scholar 

  34. Liu Z, Mikrani R, Zubair HM, Taleb A, Naveed M, Baig MMFA, et al. Systemic and local delivery of mesenchymal stem cells for heart renovation: challenges and innovations. Eur J Pharmacol. 2020;876:173049.

    CAS  PubMed  Google Scholar 

  35. Vanderheyden M, Vercauteren S, Mansour S, Delrue L, Vandekerckhove B, Heyndrickx GR, et al. Time-dependent effects on coronary remodeling and epicardial conductance after intracoronary injection of enriched hematopoietic bone marrow stem cells in patients with previous myocardial infarction. Cell Transplant. 2007;16:919–25.

    PubMed  Google Scholar 

  36. Bartunek J, Wijns W, Heyndrickx GR, Vanderheyden M. Timing of intracoronary bone-marrow-derived stem cell transplantation after ST-elevation myocardial infarction. Nat Clin Pract Cardiovasc Med. 2006;3:S52–6.

    PubMed  Google Scholar 

  37. Dib N, Menasche P, Bartunek JJ, Zeiher AM, Terzic A, Chronos NA, et al. Recommendations for successful training on methods of delivery of biologics for cardiac regeneration. A Report of the International Society for Cardiovascular Translational Research. JACC Cardiovasc Interv. 2010;3:265–75.

    PubMed  Google Scholar 

  38. Nguyen QT, Olson ES, Aguilera TA, Jiang T, Scadeng M, Ellies LG, et al. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc Natl Acad Sci U S A. 2010;107:4317–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Frangioni JV. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol. 2003;7:626–34.

    CAS  PubMed  Google Scholar 

  40. Yasmeen S, Liao X, Khan FU, Ihsan AU, Li X, Li C, et al. A novel approach to devise the therapy for ventricular fibrillation by epicardial delivery of lidocaine using active hydraulic ventricular attaching support system: an experimental study in rats. J Biomed Mater Res - Part B Appl Biomater. 2019;107:1722–31.

    CAS  PubMed  Google Scholar 

  41. Naveed M, Wenhua L, Gang W, Mohammad IS, Abbas M, Liao X, et al. A novel ventricular restraint device (ASD) repetitively deliver Salvia miltiorrhiza to epicardium have good curative effects in heart failure management. Biomed Pharmacother. 2017;95:701–10.

    PubMed  Google Scholar 

  42. Tanaka A, Furubayashi T, Yamasaki H, Takano K, Kawakami M, Kimura S, et al. The enhancement of nasal drug absorption from powder formulations by the addition of sodium carboxymethyl cellulose. IEEE Trans Nanobioscience. 2016;15:798–803.

    PubMed  Google Scholar 

  43. Cho HJ, Jee JP, Kang JY, Shin DY, Choi HG, Maeng HJ, et al. Cefdinir solid dispersion composed of hydrophilic polymers with enhanced solubility, dissolution, and bioavailability in rats. Molecules. 2017;22. https://doi.org/10.3390/molecules22020280.

  44. Ashley JJ, Levy G. Effect of vehicle viscosity and an anticholinergic agent on bioavailability of a poorly absorbed drug (phenolsulfonphthalein) in man. J Pharm Sci. 1973;62:688–90.

    CAS  PubMed  Google Scholar 

  45. Wang L, Peng J, Wang X, Zhu X, Cheng B, Gao J, et al. Carboxymethylcellulose sodium improves the pharmacodynamics of 1-deoxynojirimycin by changing its absorption characteristics and pharmacokinetics in rats. Pharmazie. 2012;67:168–73.

    CAS  PubMed  Google Scholar 

  46. Männer J, Pérez-Pomares JM, Macías D, Muñoz-Chápuli R. The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs. 2001;169:89–103.

    PubMed  Google Scholar 

  47. Cao J, Poss KD. The epicardium as a hub for heart regeneration. Nat Rev Cardiol. 2018;15:631–47.

    PubMed  PubMed Central  Google Scholar 

  48. Narita T, Shintani Y, Ikebe C, Kaneko M, Campbell NG, Coppen SR, et al. The use of scaffold-free cell sheet technique to refine Mesenchymal stromal cell-based therapy for heart failure. Mol Ther. 2013;21:860–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Koomalsingh KJ, Witschey WRT, McGarvey JR, Shuto T, Kondo N, Xu C, et al. Optimized local infarct restraint improves left ventricular function and limits remodeling. Ann Thorac Surg. 2013;95:155–62.

    PubMed  Google Scholar 

  50. Naveed M, Han L, Khan GJ, Yasmeen S, Mikrani R, Abbas M, et al. Cardio-supportive devices (VRD & DCC device) and patches for advanced heart failure: a review, summary of state of the art and future directions. Biomed Pharmacother. 2018;102:41–54.

    PubMed  Google Scholar 

  51. Xiaohui Z (2010) Active hydraulic ventricular attaching support system.

  52. Sembatya KR, Gang W, Muhammad N, Yasmeen S, Zhou X (2020) Cardioprotective effect of silicone built restraint device (ASD), for left ventricle remodeling in rat heart failure models. Authorea Prepr. https://doi.org/10.22541/AU.158888126.60534417.

Download references

Funding

This study is sponsored by the National Nature Science Foundation of China (grant numbers 30973003 & 30901993) and Qing Lan Project of Jiangsu Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Zhou.

Ethics declarations

Conflict of Interest

All authors declare no conflict of interest.

Additional information

Reyaj Mikrani and Cunyu Li are co-first authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikrani, R., Li, C., Naveed, M. et al. Pharmacokinetic Advantage of ASD Device Promote Drug Absorption through the Epicardium. Pharm Res 37, 173 (2020). https://doi.org/10.1007/s11095-020-02898-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02898-6

KEY WORDS

Navigation