Skip to main content

Advertisement

Log in

Impact of Reverse Micelle Loaded Lipid Nanocapsules on the Delivery of Gallic Acid into Activated Hepatic Stellate Cells: A Promising Therapeutic Approach for Hepatic Fibrosis

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

A Correction to this article was published on 06 October 2020

This article has been updated

Abstract

Purpose

Gallic acid (GA) is a polyphenolic compound with proven efficacy against hepatic fibrosis in experimental animals. However, it suffers from poor bioavailability and rapid clearance that hinders its clinical investigation. Accordingly, we designed and optimized reverse micelle-loaded lipid nanocapsules (RMLNC) using Box-Behnken design that can deliver GA directly into activated-hepatic stellate cells (aHSCs) aiming to suppress hepatic fibrosis progression.

Methods

GA-RMLNC was prepared using soft energy, solvent free phase inversion temperature method. Effects of formulation variables on particle size, zeta potential, entrapment efficiency (EE%) and GA release were studied. In-vivo biodistribution of GA-RMLNC in rats and in-vitro activities on aHSCs were also explored.

Results

Nano-sized GA-RMLNCs (30.35 ± 2.34 nm) were formulated with high GA-EE% (63.95 ± 2.98% w/w) and physical stability (9 months). The formulated system showed burst GA release in the first 2 h followed by sustained release profile. In-vivo biodistribution imaging revealed that RMLNC-loaded with rhodamine-B accumulated mainly in rats’ livers. Relative to GA; GA-RMLNC displayed higher anti-proliferative activities, effective internalization into aHSCs, marked down-regulation in pro-fibrogenic biomarkers’ expressions and elevated HSCs’ apoptosis.

Conclusions

These findings emphasize the promising application of RMLNC as a delivery system in hepatic fibrosis treatment, where successful delivery of GA into aHSCs was ensured via increased cellular uptake and antifibrotic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

Abbreviations

ANOVA :

Analysis of variance

aHSCs :

activated Hepatic stellate cells

cDNA :

Complementary DNA

COL1A1 :

Collagen type I

DAPI :

4′,6-diamidino-2-phenylindole

DMEM :

Dulbecco’s Modified Eagle’s Medium

ECM :

Extracellular matrix

EE%:

Entrapment efficiency percentage

FBS:

Fetal bovine serum

GA:

Gallic acid

HBSS:

Hanks Balanced Salt Solution

HPLC:

High performance liquid chromatography

KH2PO4 :

Potassium dihydrogen phosphate

LNC:

Lipid nanocapsules

Na2HPO4 :

Disodium hydrogen phosphate

NP:

Nanoparticles

PBS:

Phosphate buffer saline

PDI:

Polydispersity index

PIT:

Phase inversion temperature

PS:

Particle size

Q2h:

Percentage drug released after 2 h

qRT-PCR:

Quantitative Real-Time Polymerase Chain Reaction System

RMLNC:

Reverse micelle loaded lipid nanocapsules

RM:

reverse micelle

SA:

Stearylamine

SEM:

standard error means

SRB:

Sulphorhodamine B assay

TEM:

Transmission electron microscopy

TGF-β1:

Transforming growth factor-β1

ZP:

Zeta potential

α-SMA:

α-smooth muscle actin

References

  1. Shipley LC, Axley PD, Singal AK. Liver Fibrosis: A Clinical Update. Hepatology. 2019.

  2. Poynard T, Lebray P, Ingiliz P, Varaut A, Varsat B, Ngo Y, et al. Prevalence of liver fibrosis and risk factors in a general population using non-invasive biomarkers (FibroTest). BMC Gastroenterol. 2010;10(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Constantinides PP. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res. 1995;12(11):1561–72.

    Article  CAS  PubMed  Google Scholar 

  4. Bansal R, Nagórniewicz B, Prakash J. Clinical advancements in the targeted therapies against liver fibrosis. Mediat Inflamm. 2016;2016:1–16.

    Article  Google Scholar 

  5. Schon H-T, Bartneck M, Borkham-Kamphorst E, Nattermann J, Lammers T, Tacke F, et al. Pharmacological intervention in hepatic stellate cell activation and hepatic fibrosis. Front Pharmacol. 2016;7:33.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kisseleva T. The origin of fibrogenic myofibroblasts in fibrotic liver. HEPATOLOGY. 2017;65(3):1039–43.

    Article  PubMed  Google Scholar 

  7. El-Mezayen NS, El-Hadidy WF, El-Refaie WM, Shalaby TI, Khattab MM, El-Khatib AS. Hepatic stellate cell-targeted imatinib nanomedicine versus conventional imatinib: a novel strategy with potent efficacy in experimental liver fibrosis. J Control Release. 2017;266:226–37.

    Article  CAS  PubMed  Google Scholar 

  8. Yu K, Li N, Cheng Q, Zheng J, Zhu M, Bao S, et al. miR-96-5p prevents hepatic stellate cell activation by inhibiting autophagy via ATG7. J Mol Med. 2018;96(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  9. Yoon YJ, Friedman SL, Lee YA, editors. Antifibrotic therapies: where are we now? Seminars in liver disease: Thieme Medical Publishers; 2016.

  10. Iwakiri Y, Shah V, Rockey DC. Vascular pathobiology in chronic liver disease and cirrhosis–current status and future directions. J Hepatol. 2014;61(4):912–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. DeLeve LD. Liver sinusoidal endothelial cells in hepatic fibrosis. HEPATOLOGY. 2015;61(5):1740–6.

    Article  CAS  PubMed  Google Scholar 

  12. Chen Z, Jain A, Liu H, Zhao Z, Cheng K. Targeted drug delivery to hepatic stellate cells for the treatment of liver fibrosis. J Pharmacol Exp Ther. 2019;370(3):695–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abdou EM, Masoud MM. Gallic acid–PAMAM and gallic acid–phospholipid conjugates, physicochemical characterization and in vivo evaluation. Pharm Dev Technol. 2018;23(1):55–66.

    Article  CAS  PubMed  Google Scholar 

  14. Kaur M, Velmurugan B, Rajamanickam S, Agarwal R, Agarwal C. Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice. Pharm Res. 2009;26(9):2133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim Y-J. Antimelanogenic and antioxidant properties of gallic acid. Biol Pharm Bull. 2007;30(6):1052–5.

    Article  CAS  PubMed  Google Scholar 

  16. Liu KY, Hu S, Chan BC, Wat EC, Lau C, Hon KL, et al. Anti-inflammatory and anti-allergic activities of Pentaherb formula, Moutan cortex (Danpi) and gallic acid. Molecules. 2013;18(3):2483–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Faried A, Kurnia D, Faried L, Usman N, Miyazaki T, Kato H, et al. Anticancer effects of gallic acid isolated from Indonesian herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines. Int J Oncol. 2007;30(3):605–13.

    CAS  PubMed  Google Scholar 

  18. El-Lakkany NM, El-Maadawy WH, SHS E-d, Saleh S, Safar MM, Ezzat SM, et al. Antifibrotic effects of gallic acid on hepatic stellate cells: in vitro and in vivo mechanistic study. J Tradit Complement Med. 2019;9(1):45–53.

    Article  PubMed  Google Scholar 

  19. Sourani Z, Pourgheysari B, Beshkar P, Shirzad H, Shirzad M. Gallic acid inhibits proliferation and induces apoptosis in lymphoblastic leukemia cell line (C121). Iranian journal of medical sciences. 2016;41(6):525.

    PubMed  Google Scholar 

  20. Sun G, Zhang S, Xie Y, Zhang Z, Zhao W. Gallic acid as a selective anticancer agent that induces apoptosis in SMMC-7721 human hepatocellular carcinoma cells. Oncol Lett. 2016;11(1):150–8.

    Article  CAS  PubMed  Google Scholar 

  21. Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev. 2016;116(5):2826–85.

    Article  CAS  PubMed  Google Scholar 

  22. Fan Q-Q, Zhang C-L, Qiao J-B, Cui P-F, Xing L, Oh Y-K, et al. Extracellular matrix-penetrating nanodrill micelles for liver fibrosis therapy. Biomaterials. 2020;230:119616.

    Article  CAS  PubMed  Google Scholar 

  23. Levada K, Omelyanchik A, Rodionova V, Weiskirchen R, Bartneck M. Magnetic-assisted treatment of liver fibrosis. Cells. 2019;8(10):1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heneweer C, Gendy SE, Peñate-Medina O. Liposomes and inorganic nanoparticles for drug delivery and cancer imaging. Ther Deliv. 2012;3(5):645–56.

    Article  CAS  PubMed  Google Scholar 

  25. Hassan R, Tammam SN, El Safy S, Abdel-Halim M, Asimakopoulou A, Weiskirchen R, et al. Prevention of hepatic stellate cell activation using JQ1-and atorvastatin-loaded chitosan nanoparticles as a promising approach in therapy of liver fibrosis. Eur J Pharm Biopharm. 2019;134:96–106.

    Article  CAS  PubMed  Google Scholar 

  26. Heurtault B, Saulnier P, Pech B, Proust J-E, Benoit J-P. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res. 2002;19(6):875–80.

    Article  CAS  PubMed  Google Scholar 

  27. Groo A-C, Matougui N, Umerska A, Saulnier P. Reverse micelle-lipid nanocapsules: a novel strategy for drug delivery of the plectasin derivate AP138 antimicrobial peptide. Int J Nanomedicine. 2018;13:7565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huynh NT, Passirani C, Saulnier P, Benoît J-P. Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm. 2009;379(2):201–9.

    Article  CAS  PubMed  Google Scholar 

  29. Movassaghian S, Merkel OM, Torchilin VP. Applications of polymer micelles for imaging and drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2015;7(5):691–707.

    CAS  PubMed  Google Scholar 

  30. Allard E, Huynh NT, Vessieres A, Pigeon P, Jaouen G, Benoit J-P, et al. Dose effect activity of ferrocifen-loaded lipid nanocapsules on a 9L-glioma model. Int J Pharm. 2009;379(2):317–23.

    Article  CAS  PubMed  Google Scholar 

  31. Lamprecht A, Saumet J-L, Roux J, Benoit J-P. Lipid nanocarriers as drug delivery system for ibuprofen in pain treatment. Int J Pharm. 2004;278(2):407–14.

    Article  CAS  PubMed  Google Scholar 

  32. Alves ACS, Mainardes RM, Khalil NM. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity. Mater Sci Eng C. 2016;60:126–34.

    Article  Google Scholar 

  33. Anton N, Mojzisova H, Porcher E, Benoit J-P, Saulnier P. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials. Int J Pharm. 2010;398(1–2):204–9.

    Article  CAS  PubMed  Google Scholar 

  34. Vrignaud S, Anton N, Gayet P, Benoit J-P, Saulnier P. Reverse micelle-loaded lipid nanocarriers: a novel drug delivery system for the sustained release of doxorubicin hydrochloride. Eur J Pharm Biopharm. 2011;79(1):197–204.

    Article  CAS  PubMed  Google Scholar 

  35. Montigaud Y, Ucakar B, Krishnamachary B, Bhujwalla ZM, Feron O, Préat V, et al. Optimized acriflavine-loaded lipid nanocapsules as a safe and effective delivery system to treat breast cancer. Int J Pharm. 2018;551(1–2):322–8.

    Article  CAS  PubMed  Google Scholar 

  36. Vrignaud S, Hureaux J, Wack S, Benoit J-P, Saulnier P. Design, optimization and in vitro evaluation of reverse micelle-loaded lipid nanocarriers containing erlotinib hydrochloride. Int J Pharm. 2012;436(1–2):194–200.

    Article  CAS  PubMed  Google Scholar 

  37. Abdelbary AA, AbouGhaly MH. Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: application of box–Behnken design, in-vitro evaluation and in-vivo skin deposition study. Int J Pharm. 2015;485(1–2):235–43.

    Article  CAS  PubMed  Google Scholar 

  38. Chaudhary H, Kohli K, Kumar V. Nano-transfersomes as a novel carrier for transdermal delivery. Int J Pharm. 2013;454(1):367–80.

    Article  CAS  PubMed  Google Scholar 

  39. Radwan SAA, ElMeshad AN, Shoukri RA. Microemulsion loaded hydrogel as a promising vehicle for dermal delivery of the antifungal sertaconazole: design, optimization and ex vivo evaluation. Drug Dev Ind Pharm. 2017;43(8):1351–65.

    Article  CAS  PubMed  Google Scholar 

  40. Fernandes FHA, Salgado HRN. Gallic acid: review of the methods of determination and quantification. Crit Rev Anal Chem. 2016;46(3):257–65.

    Article  CAS  PubMed  Google Scholar 

  41. Rashidi L, Vasheghani-Farahani E, Soleimani M, Atashi A, Rostami K, Gangi F, et al. A cellular uptake and cytotoxicity properties study of gallic acid-loaded mesoporous silica nanoparticles on Caco-2 cells. J Nanopart Res. 2014;16(3):2285.

    Article  Google Scholar 

  42. Pathan IK, Patel RK, Bhandari A. Standardization development and validation of spectrophotometric method for simultaneous estimation of embelin and gallic acid as individual and in combination in ayurvedic churna formulation. Asian journal of pharmaceutical and clinical research. 2013;6(5):170–5.

    Google Scholar 

  43. Patil AG, Jobanputra AH. Formulation, characterization and evaluation of a Thermoresponsive in situ gel containing Gallic acid-loaded chitosan nanoparticles for the treatment of periodontal disease. Journal of Bionanoscience. 2015;9(5):401–8.

    Article  CAS  Google Scholar 

  44. Abdel-Hafez SM, Hathout RM, Sammour OA. Towards better modeling of chitosan nanoparticles production: screening different factors and comparing two experimental designs. Int J Biol Macromol. 2014;64:334–40.

    Article  CAS  PubMed  Google Scholar 

  45. Mehta DM, Dave DJ, Dadhaniya DV, Shelat PK, Parejiya PB, Barot BS. Application of Box-Behnken design to formulate and optimize multipolymeric fast dissolving film of rizatriptan benzoate. Asian Journal of Pharmaceutics. 2014;8(1).

  46. Gajra B, Dalwadi C, Patel R. Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using box behnken design. DARU Journal of Pharmaceutical Sciences. 2015;23(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int J Pharm. 2013;443(1–2):293–305.

    Article  CAS  PubMed  Google Scholar 

  48. Boseila AA, Abdel-Reheem AY, Basalious EB. Design of bile-based vesicles (BBVs) for hepatocytes specific delivery of Daclatasvir: Comparison of ex-vivo transenterocytic transport, in-vitro protein adsorption resistance and HepG2 cellular uptake of charged and β-sitosterol decorated vesicles. PloS one. 2019;14((7)).

  49. Shen L, Hillebrand A, Wang DQ-H, Liu M. Isolation and primary culture of rat hepatic cells. JoVE. Journal of Visualized Experiments. 2012;64:e3917.

    Google Scholar 

  50. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1(3):1112–6.

    Article  CAS  PubMed  Google Scholar 

  51. Kardani K, Gurav N, Solanki B, Patel P, Patel B. RP-HPLC method development and validation of gallic acid in polyherbal tablet formulation. Journal of Applied Pharmaceutical Science. 2013;3(5):37.

    CAS  Google Scholar 

  52. Giannitrapani L, Soresi M, Bondì ML, Montalto G, Cervello M. Nanotechnology applications for the therapy of liver fibrosis. World J Gastroenterol: WJG. 2014;20(23):7242–51.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Surendran SP, Thomas RG, Moon MJ, Jeong YY. Nanoparticles for the treatment of liver fibrosis. Int J Nanomedicine. 2017;12:6997–7006.

    Article  CAS  Google Scholar 

  54. Higuchi Y, Kawakami S, Fumoto S, Yamashita F, Hashida M. Effect of the particle size of galactosylated lipoplex on hepatocyte-selective gene transfection after intraportal administration. Biol Pharm Bull. 2006;29(7):1521–3.

    Article  CAS  PubMed  Google Scholar 

  55. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–27.

    Article  CAS  PubMed  Google Scholar 

  56. Tiram G, Scomparin A, Ofek P, Satchi-Fainaro R. Interfering cancer with polymeric siRNA nanomedicines. J Biomed Nanotechnol. 2014;10(1):50–66.

    Article  CAS  PubMed  Google Scholar 

  57. Hureaux J, Lagarce F, Gagnadoux F, Rousselet M-C, Moal V, Urban T, et al. Toxicological study and efficacy of blank and paclitaxel-loaded lipid nanocapsules after iv administration in mice. Pharm Res. 2010;27(3):421–30.

    Article  CAS  PubMed  Google Scholar 

  58. Anton N, Saulnier P, Beduneau A, Benoit J-P. Salting-out effect induced by temperature cycling on a water/nonionic surfactant/oil system. J Phys Chem B. 2007;111(14):3651–7.

    Article  CAS  PubMed  Google Scholar 

  59. Minkov I, Ivanova T, Panaiotov I, Proust J, Saulnier P. Reorganization of lipid nanocapsules at air–water interface: part 2. Properties of the formed surface film. Colloids Surf B: Biointerfaces. 2005;44(4):197–203.

    Article  CAS  PubMed  Google Scholar 

  60. Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J Control Release. 2005;107(2):215–28.

    Article  CAS  PubMed  Google Scholar 

  61. Li F, Li Q-H, Wang J-Y, Zhan C-Y, Xie C, Lu W-Y. Effects of interferon-gamma liposomes targeted to platelet-derived growth factor receptor–beta on hepatic fibrosis in rats. J Control Release. 2012;159(2):261–70.

    Article  CAS  PubMed  Google Scholar 

  62. Yang J, Hou Y, Ji G, Song Z, Liu Y, Dai G, et al. Targeted delivery of the RGD-labeled biodegradable polymersomes loaded with the hydrophilic drug oxymatrine on cultured hepatic stellate cells and liver fibrosis in rats. Eur J Pharm Sci. 2014;52:180–90.

    Article  CAS  PubMed  Google Scholar 

  63. Adrian JE, Kamps JA, Scherphof GL, Meijer DK, Reker-Smit C, Terpstra P, et al. A novel lipid-based drug carrier targeted to the non-parenchymal cells, including hepatic stellate cells, in the fibrotic livers of bile duct ligated rats. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2007;1768(6):1430–1439.

  64. Naseef MA, Ibrahim HK, Nour SAE-K. Solid form of lipid-based self-nanoemulsifying drug delivery systems for minimization of diacerein adverse effects: development and bioequivalence evaluation in albino rabbits. AAPS PharmSciTech. 2018;19(7):3097–109.

    Article  CAS  PubMed  Google Scholar 

  65. Pardeshi CV, Belgamwar VS, Tekade AR, Surana SJ. Novel surface modified polymer–lipid hybrid nanoparticles as intranasal carriers for ropinirole hydrochloride: in vitro, ex vivo and in vivo pharmacodynamic evaluation. J Mater Sci Mater Med. 2013;24(9):2101–15.

    Article  CAS  PubMed  Google Scholar 

  66. Pinho E, Soares G, Henriques M. Cyclodextrin modulation of gallic acid in vitro antibacterial activity. J Incl Phenom Macrocycl Chem. 2015;81(1–2):205–14.

    Article  CAS  Google Scholar 

  67. Du Y, Chen H, Zhang Y, Chang Y. Photodegradation of gallic acid under UV irradiation: insights regarding the pH effect on direct photolysis and the ROS oxidation-sensitized process of DOM. Chemosphere. 2014;99:254–60.

    Article  CAS  PubMed  Google Scholar 

  68. Abozaid D, Ramadan A, Barakat H, Khalafallah N. Acyclovir lipid nanocapsules gel for oromucosal delivery: a preclinical evidence of efficacy in the chicken pouch membrane model. Eur J Pharm Sci. 2018;121:228–35.

    Article  CAS  PubMed  Google Scholar 

  69. Duong HT, Dong Z, Su L, Boyer C, George J, Davis TP, et al. The use of nanoparticles to deliver nitric oxide to hepatic stellate cells for treating liver fibrosis and portal hypertension. Small. 2015;11(19):2291–304.

    Article  CAS  PubMed  Google Scholar 

  70. Cárdenas A. Hepatorenal syndrome: a dreaded complication of end-stage liver disease. Am J Gastroenterol. 2005;100(2):460–7.

    Article  PubMed  Google Scholar 

  71. Ghaznavi H, Fatemi I, Kalantari H, Hosseini Tabatabaei SMT, Mehrabani M, Gholamine B, et al. Ameliorative effects of gallic acid on gentamicin-induced nephrotoxicity in rats. J Asian Nat Prod Res. 2018;20(12):1182–93.

    Article  CAS  PubMed  Google Scholar 

  72. Asci H, Ozmen O, Ellidag HY, Aydin B, Bas E, Yilmaz N. The impact of gallic acid on the methotrexate-induced kidney damage in rats journal of food and drug analysis 2017;25(4):890–897.

  73. Tacke F, Weiskirchen R. Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques. Expert review of gastroenterology & hepatology. 2012;6(1):67–80.

    Article  CAS  Google Scholar 

  74. Alzorqi I, Ketabchi MR, Sudheer S, Manickam S. Optimization of ultrasound induced emulsification on the formulation of palm-olein based nanoemulsions for the incorporation of antioxidant β-d-glucan polysaccharides. Ultrason Sonochem. 2016;31:71–84.

    Article  CAS  PubMed  Google Scholar 

  75. Lamprecht A, Benoit J-P. Etoposide nanocarriers suppress glioma cell growth by intracellular drug delivery and simultaneous P-glycoprotein inhibition. J Control Release. 2006;112(2):208–13.

    Article  CAS  PubMed  Google Scholar 

  76. Greuter T, Shah VH. Hepatic sinusoids in liver injury, inflammation, and fibrosis: new pathophysiological insights. J Gastroenterol. 2016;51(6):511–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate the great help and efforts offered by Assistant lecturer, Mohamed Ahmed Naseef Soliman (Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University) in the formulation procedure and the in vivo evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaimaa Ali Ali Radwan.

Ethics declarations

Conflict of Interest

The authors report no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 125 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radwan, S.A.A., El-Maadawy, W.H., ElMeshad, A.N. et al. Impact of Reverse Micelle Loaded Lipid Nanocapsules on the Delivery of Gallic Acid into Activated Hepatic Stellate Cells: A Promising Therapeutic Approach for Hepatic Fibrosis. Pharm Res 37, 180 (2020). https://doi.org/10.1007/s11095-020-02891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02891-z

Keywords

Navigation