Skip to main content
Log in

Interplay of Adsorption, Supersaturation and the Presence of an Absorptive Sink on Drug Release from Mesoporous Silica-Based Formulations

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Mesoporous silica-based formulations of poorly soluble drugs may exhibit incomplete drug release due to drug remaining adsorbed on the silica surface. The goal of this study was (1) to evaluate the adsorption tendency of atazanavir from aqueous solution onto mesoporous silica (SBA-15) and (2) to determine if the drug release from mesoporous silica formulations was promoted by the presence of an absorptive compartment during dissolution testing.

Methods

Atazanavir (ATZ) formulations with different drug loadings were prepared by incipient impregnation. The solid-state properties of the formulations were analyzed by X-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared spectroscopy and thermogravimetric analysis. Drug release was compared for closed compartment versus absorptive dissolution testing at gastric and intestinal pH.

Results

XRD and DSC showed that all formulations were amorphous. Infrared spectra indicated intermolecular interactions between silanol groups in SBA-15 and carbonyl groups in atazanavir. Nanoconfinement of drug in silica mesopores was suggested by thermal analysis. Closed compartment dissolution testing showed incomplete drug release, largely due to the adsorption tendency of ATZ. However, coupled dissolution-absorption studies showed complete release over a 240 min time period. This suggested that the depletion of drug in the dissolution medium due to drug diffusion across the membrane promotes drug release. Drug release was further improved when the formulation was first added to fasted state gastric pH conditions followed by pH-shift to intestinal conditions, which was attributed to the higher solubility of atazanavir at low pH. However, ATZ mesoporous silica formulations showed a poorer overall absorption behavior relative to a polymer-based amorphous solid dispersion formulation.

Conclusion

This study highlights that absorptive dissolution conditions promote drug desorption from the silica surface and hence, enhance drug release. Further, the influence of solution pH on drug release underscores the need to consider how variations in physiological conditions may impact the performance of mesoporous silica-based formulations.

Drug release and adsorption tendency in the absence and presence of an absorptive sink during dissolution testing

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ASD:

Amorphous Solid Dispersions

ATZ:

Atazanavir

DL:

Drug Loading

DSC:

Differential Scanning calorimeter

FTIR:

Fourier Transform Infrared Spectroscopy

GI:

Gastrointestinal

HPLC:

High pressure liquid chromatography

HPMC:

Hydroxypropyl Methylcellulose

LLPS:

Liquid-Liquid Phase Separation

MPS:

Mesoporous Silica-based Drug Delivery Systems

PXRD:

Powder X-ray Diffraction

TGA:

Thermogravimetric Analysis

References

  1. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315 LP–499.

    Article  CAS  Google Scholar 

  2. Taylor LS, Zhang GGZ. Physical chemistry of supersaturated solutions and implications for Oral absorption. Adv Drug Deliv Rev. 2016;101:122–42.

    Article  CAS  PubMed  Google Scholar 

  3. Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Solubility advantage of amorphous pharmaceuticals: I. a thermodynamic analysis. J Pharm Sci. 2010;99(3):1254–64.

    Article  CAS  PubMed  Google Scholar 

  4. Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited Oral bioavailability? J Pharm Sci. 2009;98(8):2549–72.

    Article  CAS  PubMed  Google Scholar 

  5. Vallet-Regi M, Ramila A, Del Real RP, Pérez-Pariente J. A new property of MCM-41: drug delivery system. Chem Mater. 2001;13(2):308–11.

    Article  CAS  Google Scholar 

  6. Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chemie Int Ed. 2007;46(40):7548–58.

    Article  CAS  Google Scholar 

  7. Speybroeck, M. Van; Barillaro, V.; Thi, T. Do; Mellaerts, R.; Martens, J.; Humbeeck, J. Van; Vermant, J.; Annaert, P.; Den Mooter, G. Van; Augustijns, P. Ordered Mesoporous silica material SBA-15: a broad-Spectrum formulation platform for poorly soluble drugs. J Pharm Sci 2009, 98 (8), 2648–2658.

  8. Vallet-Regí M, Colilla M, Izquierdo-Barba I, Manzano M. Mesoporous silica nanoparticles for drug delivery: current insights. Molecules. 2018;23(1):47.

    Article  CAS  Google Scholar 

  9. Zhao D, Sun J, Li Q, Stucky GD. Morphological control of highly ordered Mesoporous silica SBA-15. Chem Mater. 2000;12(2):275–9.

    Article  CAS  Google Scholar 

  10. Florek, J.; Guillet-Nicolas, R.; Kleitz, F. Ordered mesoporous silica: synthesis and applications. Funct. Mater. Energy, Sustain. Dev. Biomed. Sci. ed. M. Leclerc R. Gauvin, Gruyter 2014, 61–100.

  11. Kurdyukov DA, Eurov DA, Kirilenko DA, Kukushkina JA, Sokolov VV, Yagovkina MA, et al. High-surface area spherical micro-Mesoporous silica particles. Microporous Mesoporous Mater. 2016;223:225–9.

    Article  CAS  Google Scholar 

  12. Wang S. Ordered Mesoporous materials for drug delivery. Microporous Mesoporous Mater. 2009;117(1–2):1–9.

    CAS  Google Scholar 

  13. Ahern RJ, Hanrahan JP, Tobin JM, Ryan KB, Crean AM. Comparison of Fenofibrate–Mesoporous silica drug-loading processes for enhanced drug delivery. Eur J Pharm Sci. 2013;50(3):400–9.

    Article  CAS  PubMed  Google Scholar 

  14. Mellaerts R, Jammaer JAG, Van Speybroeck M, Chen H, Van Humbeeck J, Augustijns P, et al. Physical state of poorly water soluble therapeutic molecules loaded into SBA-15 ordered Mesoporous silica carriers: a case study with Itraconazole and ibuprofen. Langmuir. 2008;24(16):8651–9.

    Article  CAS  PubMed  Google Scholar 

  15. Prasad BR, Lele S. Stabilization of the amorphous phase inside carbon nanotubes: solidification in a constrained geometry. Philos Mag Lett. 1994;70(6):357–61.

    Article  CAS  Google Scholar 

  16. Rengarajan GT, Enke D, Steinhart M, Beiner M. Stabilization of the amorphous state of Pharmaceuticals in Nanopores. J Mater Chem. 2008;18(22):2537–9.

    Article  CAS  Google Scholar 

  17. Xia X, Zhou C, Ballell L, Garcia-Bennett AE. In vivo enhancement in bioavailability of Atazanavir in the presence of proton-pump inhibitors using Mesoporous materials. ChemMedChem. 2012;7(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  18. Alcoutlabi M, McKenna GB. Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter. 2005;17(15):R461–524.

    Article  CAS  Google Scholar 

  19. Jackson CL, McKenna GB. Vitrification and crystallization of organic liquids confined to Nanoscale pores. Chem Mater. 1996;8(8):2128–37.

    Article  CAS  Google Scholar 

  20. Strømme M, Brohede U, Atluri R, Garcia-Bennett AE. Mesoporous silica-based Nanomaterials for drug delivery: evaluation of structural properties associated with release rate. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology. 2009;1(1):140–8.

    Article  PubMed  Google Scholar 

  21. Zhang Y, Zhi Z, Jiang T, Zhang J, Wang Z, Wang S. Spherical Mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug Telmisartan. J Control Release. 2010;145(3):257–63.

    Article  CAS  PubMed  Google Scholar 

  22. Andersson J, Rosenholm J, Areva S, Lindén M. Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro-and Mesoporous silica matrices. Chem Mater. 2004;16(21):4160–7.

    Article  CAS  Google Scholar 

  23. Azaïs T, Tourné-Péteilh C, Aussenac F, Baccile N, Coelho C, Devoisselle J-M, et al. Solid-state NMR study of ibuprofen confined in MCM-41 material. Chem Mater. 2006;18(26):6382–90.

    Article  CAS  Google Scholar 

  24. Horcajada P, Ramila A, Perez-Pariente J, Vallet-Regı M. Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater. 2004;68(1–3):105–9.

    Article  CAS  Google Scholar 

  25. Vallet-Regí M, Balas F, Colilla M, Manzano M. Bioceramics and pharmaceuticals: a remarkable synergy. Solid State Sci. 2007;9(9):768–76.

    Article  CAS  Google Scholar 

  26. Rosenholm JM, Sahlgren C, Lindén M. Towards multifunctional, targeted drug delivery systems using Mesoporous silica nanoparticles–opportunities & challenges. Nanoscale. 2010;2(10):1870–83.

    Article  CAS  Google Scholar 

  27. Mellaerts R, Mols R, Jammaer JAG, Aerts CA, Annaert P, Van Humbeeck J, et al. Increasing the Oral bioavailability of the poorly water soluble drug Itraconazole with ordered Mesoporous silica. Eur J Pharm Biopharm. 2008;69(1):223–30.

    Article  CAS  PubMed  Google Scholar 

  28. Van Speybroeck M, Mellaerts R, Mols R, Do Thi T, Martens JA, Van Humbeeck J, et al. Enhanced absorption of the poorly soluble drug Fenofibrate by tuning its release rate from ordered Mesoporous silica. Eur J Pharm Sci. 2010;41(5):623–30.

    Article  PubMed  CAS  Google Scholar 

  29. Mellaerts R, Mols R, Kayaert P, Annaert P, Van Humbeeck J, Van den Mooter G, et al. Ordered Mesoporous silica induces PH-independent Supersaturation of the basic low solubility compound Itraconazole resulting in enhanced Transepithelial transport. Int J Pharm. 2008;357(1–2):169–79.

    Article  CAS  PubMed  Google Scholar 

  30. McCarthy CA, Ahern RJ, Devine KJ, Crean AM. Role of drug adsorption onto the silica surface in drug release from Mesoporous silica systems. Mol Pharm. 2017;15(1):141–9.

    Article  PubMed  CAS  Google Scholar 

  31. Jambhrunkar S, Qu Z, Popat A, Yang J, Noonan O, Acauan L, et al. Effect of surface functionality of silica nanoparticles on cellular uptake and cytotoxicity. Mol Pharm. 2014;11(10):3642–55.

    Article  CAS  PubMed  Google Scholar 

  32. Jambhrunkar S, Qu Z, Popat A, Karmakar S, Xu C, Yu C. Modulating in vitro release and solubility of Griseofulvin using functionalized Mesoporous silica nanoparticles. J Colloid Interface Sci. 2014;434:218–25.

    Article  CAS  PubMed  Google Scholar 

  33. Paris JL, Colilla M, Izquierdo-Barba I, Manzano M, Vallet-Regí M. Tuning Mesoporous silica dissolution in physiological environments: a review. J Mater Sci. 2017;52(15):8761–71.

    Article  CAS  Google Scholar 

  34. Qu F, Zhu G, Huang S, Li S, Sun J, Zhang D, et al. Controlled release of captopril by regulating the pore size and morphology of ordered Mesoporous silica. Microporous Mesoporous Mater. 2006;92(1–3):1–9.

    Article  CAS  Google Scholar 

  35. Munoz B, Ramila A, Perez-Pariente J, Diaz I, Vallet-Regi M. MCM-41 organic modification as drug delivery rate regulator. Chem Mater. 2003;15(2):500–3.

    Article  CAS  Google Scholar 

  36. Mellaerts, R.; Aerts, C. A.; Van Humbeeck, J.; Augustijns, P.; Van den Mooter, G.; Martens, J. A. Enhanced release of itraconazole from ordered mesoporous SBA-15 Silica Materials. Chem. Commun. 2007, No. 13, 1375–1377.

  37. Smirnova I, Mamic J, Arlt W. Adsorption of drugs on silica aerogels. Langmuir. 2003;19(20):8521–5.

    Article  CAS  Google Scholar 

  38. Song S-W, Hidajat K, Kawi S. Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix− drug interactions. Langmuir. 2005;21(21):9568–75.

    Article  CAS  PubMed  Google Scholar 

  39. Yang P, Gai S, Lin J. Functionalized Mesoporous silica materials for controlled drug delivery. Chem Soc Rev. 2012;41(9):3679–98.

    Article  CAS  PubMed  Google Scholar 

  40. Kumar D, Sailaja Chirravuri SV, Shastri NR. Impact of surface area of silica particles on dissolution rate and Oral bioavailability of poorly water soluble drugs: a case study with Aceclofenac. Int J Pharm. 2014;461(1):459–68.

    Article  CAS  PubMed  Google Scholar 

  41. McCarthy CA, Ahern RJ, Devine KJ, Crean AM. Role of drug adsorption onto the silica surface in drug release from Mesoporous silica systems. Mol Pharm. 2018;15(1):141–9.

    Article  CAS  PubMed  Google Scholar 

  42. Van Speybroeck M, Mols R, Mellaerts R, Thi T. Do; Martens, J. a.; Humbeeck, J. van; Annaert, P.; Mooter, G. van den; Augustijns, P. combined use of ordered Mesoporous silica and precipitation inhibitors for improved Oral absorption of the poorly soluble Weak Base Itraconazole. Eur. J Pharm Biopharm. 2010;75(3):354–65.

    Article  CAS  Google Scholar 

  43. Limnell T, Santos HA, Mäkilä E, Heikkilä T, Salonen J, Murzin DY, et al. Drug delivery formulations of ordered and nonordered Mesoporous silica: comparison of three drug loading methods. J Pharm Sci. 2011;100(8):3294–306.

    Article  CAS  PubMed  Google Scholar 

  44. Dening TJ, Taylor LS. Supersaturation potential of ordered Mesoporous silica delivery systems. Part 1: dissolution performance and drug membrane transport rates. Mol. Pharm. 2018;15(8):3489–501.

    CAS  Google Scholar 

  45. Hate SS, Reutzel-Edens SM, Taylor LS. Absorptive dissolution testing: an improved approach to study the impact of residual Crystallinity on the performance of amorphous formulations. J Pharm Sci. 2019.

  46. Florek J, Caillard R, Kleitz F. Evaluation of Mesoporous silica nanoparticles for Oral drug delivery – current status and perspective of MSNs drug carriers. Nanoscale. 2017;9(40):15252–77.

    Article  CAS  PubMed  Google Scholar 

  47. Vialpando M, Smulders S, Bone S, Jager C, Vodak D, Van Speybroeck M, et al. Evaluation of three amorphous drug delivery technologies to improve the Oral absorption of Flubendazole. J Pharm Sci. 2016;105(9):2782–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hate, S. S.; Reutzel-Edens, S. M.; Taylor, L. S. Absorptive dissolution testing of supersaturating systems: Impact of absorptive sink conditions on solution phase behavior and mass transport. Mol. Pharm. 2017.

  49. Hate, S. S.; Reutzel-Edens, S. M.; Taylor, L. S. Insight into amorphous solid dispersion performance by coupled dissolution and membrane mass transfer measurements. Mol Pharm. 2018.

  50. Braun K, Pochert A, Beck M, Fiedler R, Gruber J, Lindén M. Dissolution kinetics of Mesoporous silica nanoparticles in different simulated body fluids. J Sol-Gel Sci Technol. 2016;79(2):319–27.

    Article  CAS  Google Scholar 

  51. Dening TJ, Zemlyanov D, Taylor LS. Application of an adsorption isotherm to explain incomplete drug release from ordered Mesoporous silica materials under supersaturating conditions. J Control Release. 2019;307:186–99.

    Article  CAS  PubMed  Google Scholar 

  52. Parfitt GD, Rochester CH. Adsorption from solution at the solid/liquid Interface. Academic press London. 1983;122.

  53. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60(2):309–19.

    Article  CAS  Google Scholar 

  54. Fu Y, Hansen RS, Bartell FE. Thermodynamics of adsorption from solutions. I. The molality and activity co-efficient of adsorbed layers. J Phys Colloid Chem. 1948;52(2):374–86.

    Article  CAS  PubMed  Google Scholar 

  55. McMillan WG, Teller E. The assumptions of the BET theory. J Phys Chem. 1951;55(1):17–20.

    Article  CAS  Google Scholar 

  56. Ebadi A, Mohammadzadeh JSS, Khudiev A. What is the correct form of BET isotherm for modeling liquid phase adsorption? Adsorption. 2009;15(1):65–73.

    Article  CAS  Google Scholar 

  57. Weng C-H, Pan Y-F. Adsorption characteristics of methylene blue from aqueous solution by sludge ash. Colloids Surfaces A Physicochem Eng Asp. 2006;274(1):154–62.

    Article  CAS  Google Scholar 

  58. Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem Eng J. 2010;156(1):2–10.

    Article  CAS  Google Scholar 

  59. Kara S, Aydiner C, Demirbas E, Kobya M, Dizge N. Modeling the effects of adsorbent dose and particle size on the adsorption of reactive textile dyes by Fly ash. Desalination. 2007;212(1–3):282–93.

    Article  CAS  Google Scholar 

  60. Sivaraj R, Namasivayam C, Kadirvelu K. Orange Peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions. Waste Manag. 2001;21(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  61. Xu Y, Ohki A, Maeda S. Adsorption and removal of antimony from aqueous solution by an activated alumina: 1. Adsorption capacity of adsorbent and effect of process variables. Toxicol Environ Chem. 2001;80(3–4):133–44.

    Article  CAS  Google Scholar 

  62. Yapar S, Özbudak V, Dias A, Lopes A. Effect of adsorbent concentration to the adsorption of phenol on Hexadecyl Trimethyl ammonium-Bentonite. J Hazard Mater. 2005;121(1–3):135–9.

    Article  CAS  PubMed  Google Scholar 

  63. Pradhan J, Das SN, Thakur RS. Adsorption of hexavalent chromium from aqueous solution by using activated red mud. J Colloid Interface Sci. 1999;217(1):137–41.

    Article  CAS  PubMed  Google Scholar 

  64. Ellison CJ, Torkelson JM. The distribution of glass-transition temperatures in Nanoscopically confined glass formers. Nat Mater. 2003;2(10):695–700.

    Article  CAS  PubMed  Google Scholar 

  65. Park J-Y, McKenna GB. Size and confinement effects on the glass transition behavior of polystyrene/o-Terphenyl polymer solutions. Phys Rev B. 2000;61(10):6667–76.

    Article  CAS  Google Scholar 

  66. Tang XC, Pikal MJ, Taylor LS. A spectroscopic investigation of hydrogen bond patterns in crystalline and amorphous phases in Dihydropyridine Calcium Channel blockers. Pharm Res. 2002;19(4):477–83.

    Article  CAS  PubMed  Google Scholar 

  67. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.

    Article  CAS  Google Scholar 

  68. Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res. 1995;12(6):799–806.

    Article  CAS  PubMed  Google Scholar 

  69. Ahlneck C, Zografi G. The molecular basis of moisture effects on the physical and chemical stability of drugs in the solid state. Int J Pharm. 1990;62(2–3):87–95.

    Article  CAS  Google Scholar 

  70. Cheng S, McKenna GB. Nanoconfinement effects on the glass transition and crystallization behaviors of nifedipine. Mol Pharm. 2019;16(2):856–66.

    Article  CAS  PubMed  Google Scholar 

  71. Jackson CL, McKenna GB. The melting behavior of organic materials confined in porous solids. J Chem Phys. 1990;93(12):9002–11.

    Article  CAS  Google Scholar 

  72. Babonneau F, Yeung L, Steunou N, Gervais C, Ramila A, Vallet-Regi M. Solid state NMR characterisation of encapsulated molecules in Mesoporous silica. J Sol-gel Sci Technol. 2004;31(1–3):219–23.

    Article  CAS  Google Scholar 

  73. Catlow CRA, Van Speybroeck V, van Santen R. Modelling and simulation in the science of micro-and meso-porous materials: Elsevier; 2017.

  74. Paolone A, Palumbo O, Rispoli P, Cantelli R, Autrey T, Karkamkar A. Absence of the structural phase transition in Ammonia Borane dispersed in Mesoporous silica: evidence of novel thermodynamic properties. J Phys Chem C. 2009;113(24):10319–21.

    Article  CAS  Google Scholar 

  75. Antonino RS, Ruggiero M, Song Z, Nascimento TL, Lima EM, Bohr A, et al. Impact of drug loading in Mesoporous silica-amorphous formulations on the physical stability of drugs with high recrystallization tendency. Int J Pharm X. 2019;1:100026.

    PubMed  PubMed Central  Google Scholar 

  76. Yang S, Liu Z, Jiao Y, Liu Y, Ji C, Zhang Y. New insight into PEO modified inner surface of HNTs and its Nano-confinement within nanotube. J Mater Sci. 2014;49(12):4270–8.

    Article  CAS  Google Scholar 

  77. Chen K, Wilkie CA, Vyazovkin S. Nanoconfinement revealed in degradation and relaxation studies of two structurally different polystyrene−Clay Systems. J Phys Chem B. 2007;111(44):12685–92.

    Article  CAS  PubMed  Google Scholar 

  78. Rosenholm JM, Lindén M. Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications. J Control release. 2008;128(2):157–64.

    Article  CAS  PubMed  Google Scholar 

  79. Sulpizi M, Gaigeot M-P, Sprik M. The silica–water Interface: how the Silanols determine the surface acidity and modulate the water properties. J Chem Theory Comput. 2012;8(3):1037–47.

    Article  CAS  PubMed  Google Scholar 

  80. Delle Piane, M.; Corno, M.; Ugliengo, P. Chapter 9 - Ab Initio Modeling of Hydrogen Bond Interaction at Silica Surfaces With Focus on Silica/Drugs Systems; Catlow, C. R. A., Van Speybroeck, V., van Santen, R. A. B. T.-M. and S. in the S. of M. M.-P. M., Eds.; Elsevier, 2018; pp 297–328.

  81. Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52(12):1145–9.

    Article  CAS  PubMed  Google Scholar 

  82. Pham AL-T, Sedlak DL, Doyle FM. Dissolution of Mesoporous silica supports in aqueous solutions: implications for Mesoporous silica-based water treatment processes. Appl Catal B Environ. 2012;126:258–64.

    Article  CAS  Google Scholar 

  83. Joos P, Serrien G. The principle of Braun—Le Châtelier at surfaces. J Colloid Interface Sci. 1991;145(1):291–4.

    Article  CAS  Google Scholar 

  84. Indulkar AS, Box KJ, Taylor R, Ruiz R, Taylor LS. PH-dependent liquid–liquid phase separation of highly supersaturated solutions of weakly basic drugs. Mol Pharm. 2015;12(7):2365–77.

    Article  CAS  PubMed  Google Scholar 

  85. Tao Q, Xu Z, Wang J, Liu F, Wan H, Zheng S. Adsorption of humic acid to Aminopropyl functionalized SBA-15. Microporous Mesoporous Mater. 2010;131(1–3):177–85.

    Article  CAS  Google Scholar 

  86. Indulkar AS, Gao Y, Raina SA, Zhang GGZ, Taylor LS. Exploiting the phenomenon of liquid–liquid phase separation for enhanced and sustained membrane transport of a poorly water-soluble drug. Mol Pharm. 2016;13(6):2059–69.

    Article  CAS  PubMed  Google Scholar 

  87. Achenbach CJ, Darin KM, Murphy RL, Katlama C. Atazanavir/ritonavir-based combination antiretroviral therapy for treatment of HIV-1 infection in adults. Future Virol. 2011;6(2):157–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne S. Taylor.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hate, S.S., Reutzel-Edens, S.M. & Taylor, L.S. Interplay of Adsorption, Supersaturation and the Presence of an Absorptive Sink on Drug Release from Mesoporous Silica-Based Formulations. Pharm Res 37, 163 (2020). https://doi.org/10.1007/s11095-020-02879-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02879-9

Key Words

Navigation