Skip to main content

Advertisement

Log in

Preparation and Evaluation of Cubosomes/Cubosomal Gels for Ocular Delivery of Beclomethasone Dipropionate for Management of Uveitis

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Topical corticosteroids administration is commonly used for management of various ocular conditions especially those affecting the anterior segment of the eye. Poor solubility and limited pre-corneal residence time result in insufficient drug penetration to the outer (cornea and conjunctival-scleral) coats of the eye. This study aimed to prepare and evaluate cubosomes for prolonging residence time and enhancing ocular bioavailability of BDP.

Methods

GMO-cubosomes were prepared using the top-down technique. Two stabilizers were investigated: poloxamer 407 and solulan C24. Particle size, EE %, polarized-light microscopy, TEM, in vitro release, transcorneal permeation, BCOP, histopathology and in vivo evaluation for treatment of uveitis in a rabbits’ model were studied.

Results

The prepared cubosomes were of nano-sizes (100 nm – 278 nm); EE% was around 94%. The cubosomes were confirmed by visualizing the “Maltese crosses” textures. Transcorneal permeation was significantly (p < 0.05) improved, compared to BDP-suspension (the control formulation). The optimized cubosomes F1P was incorporated in CMC gel (Cubo-gel). The prepared Cubo-gel formulations showed better rheological characteristics and high ocular tolerability. Superior anti-inflammatory properties were recorded for the Cubo-gel for treatment of endotoxin-induced uveitis in the rabbit model when compared to the control BDP-suspension.

Conclusions

Transcorneal permeation parameters Papp and flux and AUC0-10h markedly enhanced by up to 4-, 5.8-and 5.5-fold respectively, compared to the control BDP-suspension formulation. This study suggested that cubosomes/Cubo-gel could be an auspicious ocular delivery system for BDP that was able to effectively treat uveitis (a disease of the posterior segment of the eye).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

BCOP:

Bovine corneal opacity and permeability assay

BDP:

Beclomethasone dipropionate

CMC:

Carboxymethylcellulose

EE%:

Entrapment efficiency percentage

GMO:

Glyceryl monooleate

Papp :

Apparent permeability coefficient

TEM:

Transmission electron microscopy

References

  1. Fel A, Aslangul E, Le Jeunne C. Eye and corticosteroid's use. Presse Med. 2012;41(4):414–21.

    Google Scholar 

  2. Abdelkader H, Alany R. Controlled and continuous release ocular drug delivery systems: pros and cons. Curr Drug Deliv. 2012;9(4):421–30.

    CAS  Google Scholar 

  3. Kwatra D, Mitra AK. Drug delivery in ocular diseases: Barriers and strategies. World J Pharmacol. 2013;2(4):78–83.

    Google Scholar 

  4. Järvinen K, Järvinen T, Urtti A. Ocular absorption following topical delivery. Adv Drug Deliv Rev. 1995;16(1):3–19.

    Google Scholar 

  5. Ozerdem U, Levi L, Cheng L, Song MK, Scher C, Freeman WR. Systemic toxicity of topical and periocular corticosteroid therapy in an 11-year-old male with posterior uveitis. Am J Ophthalmol. 2000;130(2):240–1.

    CAS  Google Scholar 

  6. McGhee CN, Dean S, Danesh-Meyer H. Locally administered ocular corticosteroids: benefits and risks. Drug Saf. 2002;25(1):33–55.

    CAS  Google Scholar 

  7. McCluskey PJ, Towle HM, Lightman S. Management of chronic uveitis. Bmj. 2000;320(7234):555–8.

    CAS  Google Scholar 

  8. Feiler DL, Srivastava SK, Pichi F, Bena J, Lowder CY. Resolution of noninfectious uveitic cystoid macular edema with topical difluprednate. Retina. 2017;37(5):844–50.

    Google Scholar 

  9. Abdelkader H, Alani AW, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2014;21(2):87–100.

    CAS  Google Scholar 

  10. Mishra GP, Bagui M, Tamboli V, Mitra AK. Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv. 2011;2011.

  11. Sharma A, Kumar L, Kumar P, Prasad N, Rastogi V. Niosomes: A Promising Approach in Drug Delivery Systems. J Drug Del Therap. 2019;9(4):635–42.

    Google Scholar 

  12. Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today. 2016;21(5):789–801.

    CAS  Google Scholar 

  13. Khan S, Jain P, Jain S, Jain R, Bhargava S, Jain A. Topical delivery of erythromycin through cubosomes for acne. Pharm Nanotechnol. 2018;6(1):38–47.

    CAS  Google Scholar 

  14. Gaballa SA, El Garhy OH, Abdelkader H. Cubosomes: composition, preparation, and drug delivery applications. J Adv Biomed Pharm Sci. 2020;3(1):1–9.

    Google Scholar 

  15. Rizwan SB, Boyd BJ. Cubosomes: structure, preparation and use as an antigen delivery system. Subunit Vaccine Delivery: Springer; 2015. p. 125-40.

  16. Boyd BJ, Whittaker DV, Khoo S-M, Davey G. Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int J Pharm. 2006;309(1-2):218–26.

    CAS  Google Scholar 

  17. Anbarasan B, Grace XF, Shanmuganathan S. An overview of cubosomes–smart drug delivery system. Sri Ramachandra J Med. 2015;8(1):1–4.

    Google Scholar 

  18. Gan L, Han S, Shen J, Zhu J, Zhu C, Zhang X, et al. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: improving preocular retention and ocular bioavailability. Int J Pharm. 2010;396(1-2):179–87.

    CAS  Google Scholar 

  19. Thadanki M, Kumari PS, Prabha KS. Overview of cubosomes: a nano particle. Int J Res Pharm Chem. 2011;1(3):535–41.

    CAS  Google Scholar 

  20. Sheskey PJ, Cook WG, Cable CG. Glyceryl monooleate. In: Sheskey PJ, Cook WG, Cable CG, editors. Handbook of Pharmaceutical Excipients 8th. Edition ed. London: Pharmaceutical Press; 2017. p. 411–3.

    Google Scholar 

  21. Kulkarni CV, Wachter W, Iglesias-Salto G, Engelskirchen S, Ahualli S. Monoolein: a magic lipid? Phys Chem Chem Phys. 2011;13(8):3004–21.

    CAS  Google Scholar 

  22. Zhang J, Wang S. Topical use of Coenzyme Q10-loaded liposomes coated with trimethyl chitosan: tolerance, precorneal retention and anti-cataract effect. Int J Pharm. 2009;372(1-2):66–75.

    CAS  Google Scholar 

  23. Gordon S, Young K, Wilson R, Rizwan S, Kemp R, Rades T, et al. Chitosan hydrogels containing liposomes and cubosomes as particulate sustained release vaccine delivery systems. J Liposome Res. 2012;22(3):193–204.

    CAS  Google Scholar 

  24. Brown HM, Storey G, George W. Beclomethasone dipropionate: a new steroid aerosol for the treatment of allergic asthma. Br Med J. 1972;1(5800):585–90.

    CAS  Google Scholar 

  25. Rizzello F, Mazza M, Salice M, Calabrese C, Calafiore A, Campieri M, et al. The safety of beclomethasone dipropionate in the treatment of ulcerative colitis. Expert Opin Drug Saf. 2018;17(9):963–9.

    CAS  Google Scholar 

  26. Weiss C. Materials characterisation of crystalline beclomethasone dipropionate: impact of manufacturing conditions on physicochemical properties 2018.

  27. Shah TJ, Conway MD, Peyman GA. Intracameral dexamethasone injection in the treatment of cataract surgery induced inflammation: design, development, and place in therapy. Clin Ophthalmol. 2018;12:2223.

    CAS  Google Scholar 

  28. He Y, Yi W, Suino-Powell K, Zhou XE, Tolbert WD, Tang X, et al. Structures and mechanism for the design of highly potent glucocorticoids. Cell Res. 2014;24(6):713–26.

    CAS  Google Scholar 

  29. Sakagami M, Kinoshita W, Sakon K. Sato J-i, Makino Y. Mucoadhesive beclomethasone microspheres for powder inhalation: their pharmacokinetics and pharmacodynamics evaluation. J Control Release. 2002;80(1-3):207–18.

    CAS  Google Scholar 

  30. Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, et al. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res. 2005;22(12):2163–73.

    CAS  Google Scholar 

  31. Verma P, Ahuja M. Cubic liquid crystalline nanoparticles: optimization and evaluation for ocular delivery of tropicamide. Drug Deliv. 2016;23(8):3043–54.

    CAS  Google Scholar 

  32. Hundekar YR, Saboji J, Patil S, Nanjwade B. Preparation and evaluation of diclofenac sodium cubosomes for percutaneous administration. WJPPS. 2014;3(1):523–39.

    Google Scholar 

  33. Lessnig W, Metz G, Spiegel W, Faust M, Junkers G. Apparatus for measuring surface tension. Google Patents; 1982.

  34. Ali K, Bilal S. Surface tensions and thermodynamic parameters of surface formation of aqueous salt solutions: III. Aqueous solution of KCl, KBr and KI. Colloids Surf A Physicochem Eng Asp. 2009;337(1-3):194–9.

    CAS  Google Scholar 

  35. Abdelkader H. Design and Characterisation of Niosomes for Ocular Delivery of Naltrexone Hydrochloride 2011.

  36. Berger N, Sachse A, Bender J, Schubert R, Brandl M. Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics. Int J Pharm. 2001;223(1):55–68.

    CAS  Google Scholar 

  37. El-Enin HA, AL-Shanbari AH. Nanostructured liquid crystalline formulation as a remarkable new drug delivery system of anti-epileptic drugs for treating children patients. Saudi Pharm J. 2018;26(6):790–800.

    Google Scholar 

  38. Nasr M, Ghorab MK, Abdelazem A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm Sin B. 2015;5(1):79–88.

    Google Scholar 

  39. Peng X, Zhou Y, Han K, Qin L, Wu C. Preparation and in vitro study on diffusion of capsaicin cubosome. Zhongguo Zhong Yao Za Zhi. 2014;39(4):644–7.

    CAS  PubMed Central  Google Scholar 

  40. Prasanna B, Shetty A, Nadh T, Gopinath B, Ahmed M. Development of new spectrophotometric methods for the simultaneous estimation of levosalbutamol sulfate and beclomethasone dipropionate in bulk drug and pharmaceutical formulations (rotacap). Int J PharmTech Res. 2012;4(2):791–8.

    Google Scholar 

  41. Han S, Shen J-Q, Gan Y, Geng H-M, Zhang X-X, Zhu C-L, et al. Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacol Sin. 2010;31(8):990.

    CAS  Google Scholar 

  42. Gaafar PM, Abdallah OY, Farid RM, Abdelkader H. Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone. J Liposome Res. 2014;24(3):204–15.

    CAS  Google Scholar 

  43. Abdelkader H, Ismail S, Kamal A, Alany R. Preparation of niosomes as an ocular delivery system for naltrexone hydrochloride: physicochemical characterization. Die Pharm-Int J Pharm Sci. 2010;65(11):811–7.

    CAS  Google Scholar 

  44. Dong Y, Dong P, Huang D, Mei L, Xia Y, Wang Z, et al. Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery. Eur J Pharm Biopharm. 2015;91:82–90.

    CAS  Google Scholar 

  45. Ali Z, Sharma PK, Warsi MH. Fabrication and Evaluation of Ketorolac Loaded Cubosome for Ocular Drug Delivery. J Appl Pharm Sci. 2016;6(09):204–8.

    CAS  Google Scholar 

  46. Yang Z, Peng X, Tan Y, Chen M, Zhu X, Feng M, et al. Optimization of the preparation process for an oral phytantriol-based amphotericin B cubosomes. J Nanomater. 2011;2011:4.

    Google Scholar 

  47. El-Kamel A. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm. 2002;241(1):47–55.

    CAS  Google Scholar 

  48. Tatke A, Dudhipala N, Janga K, Balguri S, Avula B, Jablonski M, et al. In Situ Gel of Triamcinolone Acetonide-Loaded Solid Lipid Nanoparticles for Improved Topical Ocular Delivery: Tear Kinetics and Ocular Disposition Studies. J Nanomater. 2019;9(1):33.

    Google Scholar 

  49. Yang T, Cui F-D, Choi M-K, Cho J-W, Chung S-J, Shim C-K, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm. 2007;338(1-2):317–26.

    CAS  Google Scholar 

  50. Abdelkader H, Ismail S, Kamal A, Alany RG. Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J Pharm Sci. 2011;100(5):1833–46.

    CAS  Google Scholar 

  51. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.

    CAS  Google Scholar 

  52. Peppas N. Analysis of Fickian and non-Fickian drug release from polymers. 1985.

  53. Peppas NA, Sahlin JJ. A simple equation for the description of solute release .III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57(2):169–72.

    CAS  Google Scholar 

  54. Abdelkader H, Longman MR, Alany RG, Pierscionek B. Phytosome-hyaluronic acid systems for ocular delivery of L-carnosine. Int J Nanomedicine. 2016;11:2815.

    CAS  Google Scholar 

  55. Li C, Chen R, Xu M, Qiao J, Yan L, Guo XD. Hyaluronic acid modified MPEG-b-PAE block copolymer aqueous micelles for efficient ophthalmic drug delivery of hydrophobic genistein. Drug Deliv. 2018;25(1):1258–65.

    CAS  Google Scholar 

  56. Abdelbary GA, Amin MM, Zakaria MY. Ocular ketoconazole-loaded proniosomal gels: formulation, ex vivo corneal permeation and in vivo studies. Drug Deliv. 2017;24(1):309–19.

    CAS  Google Scholar 

  57. Dai Y, Zhou R, Liu L, Lu Y, Qi J, Wu W. Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): in vitro characterization and improved corneal permeation. Int J Nanomedicine. 2013;8:1921.

    Google Scholar 

  58. Schoenwald RD, Huang HS. Corneal penetration behavior of β-blocking agents I: Physicochemical factors. J Pharm Sci. 1983;72(11):1266–72.

    CAS  Google Scholar 

  59. Ramsay E, del Amo EM, Toropainen E, Tengvall-Unadike U, Ranta V-P, Urtti A, et al. Corneal and conjunctival drug permeability: Systematic comparison and pharmacokinetic impact in the eye. Eur J Pharm Sci. 2018;119:83–9.

    CAS  Google Scholar 

  60. Attama A, Reichl S, Müller-Goymann C. Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea. Curr Eye Res. 2009;34(8):698–705.

    CAS  Google Scholar 

  61. Abdelkader H, Ismail S, Hussein A, Wu Z, Al-Kassas R, Alany RG. Conjunctival and corneal tolerability assessment of ocular naltrexone niosomes and their ingredients on the hen's egg chorioallantoic membrane and excised bovine cornea models. Int J Pharm. 2012;432(1-2):1–10.

    CAS  Google Scholar 

  62. Pastor-Clerigues A, Serrano A, Milara J, Marti-Bonmati E, Lopez-Perez FJ, Garcia-Montanes S, et al. Evaluation of the ocular tolerance of three tacrolimus topical pharmaceutical preparations by bovine corneal opacity and permeability test. Curr Eye Res. 2016;41(7):890–6.

    CAS  Google Scholar 

  63. Cooper K, Earl L, Harbell J, Raabe H. Prediction of ocular irritancy of prototype shampoo formulations by the isolated rabbit eye (IRE) test and bovine corneal opacity and permeability (BCOP) assay. Toxicol in Vitro. 2001;15(2):95–103.

    CAS  Google Scholar 

  64. Kassem M, Rahman AA, Ghorab M, Ahmed M, Khalil R. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm. 2007;340(1-2):126–33.

    CAS  Google Scholar 

  65. Alshamsan A, Kalam MA, Vakili MR, Binkhathlan Z, Raish M, Ali R, et al. Treatment of endotoxin-induced uveitis by topical application of cyclosporine a-loaded PolyGel™ in rabbit eyes. Int J Pharm. 2019;569:118573.

    CAS  Google Scholar 

  66. Baranano DE, Kim SJ, Edelhauser HF, Durairaj C, Kompella UB, Handa JT. Efficacy and pharmacokinetics of intravitreal non-steroidal anti-inflammatory drugs for intraocular inflammation. Br J Ophthalmol. 2009;93(10):1387–90.

    CAS  Google Scholar 

  67. Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G. Eudragit RS100® nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci. 2002;16(1-2):53–61.

    CAS  Google Scholar 

  68. Chen C-L, Chen J-T, Liang C-M, Tai M-C, Lu D-W, Chen Y-H. Silibinin treatment prevents endotoxin-induced uveitis in rats in vivo and in vitro. PLoS One. 2017;12(4):e0174971.

    Google Scholar 

  69. Bucci FA Jr, Waterbury LD, Amico LM. Prostaglandin E2 inhibition and aqueous concentration of ketorolac 0.4%(acular LS) and nepafenac 0.1%(nevanac) in patients undergoing phacoemulsification. Am J Ophthalmol. 2007;144(1):146–7.

    CAS  Google Scholar 

  70. Parks DJ, Cheung MK, Chan C-C, Roberge FG. The role of nitric oxide in uveitis. Arch Ophthalmol. 1994;112(4):544–6.

    CAS  Google Scholar 

  71. Griess P. Bemerkungen zu der Abhandlung der HH. Weselsky und Benedikt “Ueber einige Azoverbindungen”. Ber Deutsch Chem Ges. 1879;12(1):426–8.

    Google Scholar 

  72. Hajj-Ali RA, Lowder C, Mandell BF. Uveitis in the internist’s office: are a patient’s eye symptoms serious. Cleve Clin J Med. 2005;72(4):329–39.

    Google Scholar 

  73. El-Shazly LHM, El-Gohary AA, El-Hossary GG. Safety of intravitreal triamcinolone acetonide: an electrophysiologic and histopathological study in rabbits. Int J Ophthalmol. 2013;6(6):790–5.

    CAS  Google Scholar 

  74. Lancelot A, Sierra T, Serrano JL. Nanostructured liquid-crystalline particles for drug delivery. Expert Opin Drug Deliv. 2014;11(4):547–64.

    CAS  Google Scholar 

  75. Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY. Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: pharmaceutical, biological, and toxicological studies. Int J Nanomedicine. 2015;10:5459.

    CAS  Google Scholar 

  76. Uchegbu I. Some aspects of the niosomal delivery of doxorubicin: University of London; 1994.

  77. Alkholief M, Albasit H, Alhowyan A, Alshehri S, Raish M, Kalam MA, et al. Employing a PLGA-TPGS based nanoparticle to improve the ocular delivery of Acyclovir. Saudi Pharm J. 2018;27(2):293–302.

    Google Scholar 

  78. Pawar PK, Majumdar DK. Effect of formulation factors on in vitro permeation of moxifloxacin from aqueous drops through excised goat, sheep, and buffalo corneas. AAPS PharmSciTech. 2006;7(1):E89.

    Google Scholar 

  79. Rathore MS, Majumdar DK. Effect of formulation factors on in vitro transcorneal permeation of gatifloxacin from aqueous drops. AAPS PharmSciTech. 2006;7(3):E12.

    Google Scholar 

  80. Abdelkader H, Wu Z, Al-Kassas R, Alany RG. Niosomes and discomes for ocular delivery of naltrexone hydrochloride: morphological, rheological, spreading properties and photo-protective effects. Int J Pharm. 2012;433(1-2):142–8.

    CAS  Google Scholar 

  81. Singh Y. Martin’s physical pharmacy and pharmaceutical sciences. New Jersey: Department of Pharmaceutics Ernest Mario School of Pharmacy Rutgers, The State University of New Jersey. 2006.

  82. Aldrich D, Bach CM, Brown W, Chambers W, Fleitman J, Hunt D, et al. Ophthalmic preparations. US Pharmacopeia. 2013;39(5):1–21.

    Google Scholar 

  83. Huang J, Peng T, Li Y, Zhan Z, Zeng Y, Huang Y, et al. Ocular cubosome drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS PharmSciTech. 2017;18(8):2919–26.

    CAS  Google Scholar 

  84. Lai J, Chen J, Lu Y, Sun J, Hu F, Yin Z, et al. Glyceryl monooleate/poloxamer 407 cubic nanoparticles as oral drug delivery systems: I. In vitro evaluation and enhanced oral bioavailability of the poorly water-soluble drug simvastatin. AAPS PharmSciTech. 2009;10(3):960.

    CAS  Google Scholar 

  85. Spicer PT, Hayden KL, Lynch ML, Ofori-Boateng A, Burns JL. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir. 2001;17(19):5748–56.

    CAS  Google Scholar 

  86. Jain V, Swarnakar NK, Mishra PR, Verma A, Kaul A, Mishra AK, et al. Paclitaxel loaded PEGylated gleceryl monooleate based nanoparticulate carriers in chemotherapy. Biomaterials. 2012;33(29):7206–20.

    CAS  Google Scholar 

  87. Svensson O, Thuresson K, Arnebrant T. Interactions between drug delivery particles and mucin in solution and at interfaces. Langmuir. 2008;24(6):2573–9.

    CAS  Google Scholar 

  88. Manosroi A, Wongtrakul P, Manosroi J, Sakai H, Sugawara F, Yuasa M, et al. Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surf B: Biointerfaces. 2003;30(1-2):129–38.

    CAS  Google Scholar 

  89. Abdelkader H, Mansour HF. Comparative studies for ciprofloxacin hydrochloride pre-formed gels and thermally triggered (in situ) gels: in vitro and in vivo appraisal using a bacterial keratitis model in rabbits. Pharm Dev Technol. 2015;20(4):410–6.

    CAS  Google Scholar 

  90. Brogden R, Heel R, Speight T, Avery G. Beclomethasone dipropionate. Drugs. 1984;28(2):99–126.

    CAS  Google Scholar 

  91. Barnes PJ. Inhaled glucocorticoids for asthma. N Engl J Med. 1995;332(13):868–75.

    CAS  Google Scholar 

  92. Kwon TK, Hong SK, Kim J-C. In vitro skin permeation of cubosomes containing triclosan. J Ind Eng. 2012;18(1):563–7.

    CAS  Google Scholar 

  93. Chandaroy P, Sen A, Hui SW. Temperature-controlled content release from liposomes encapsulating Pluronic F127. J Control Release. 2001;76(1-2):27–37.

    CAS  Google Scholar 

  94. Charrueau C, Zandanel C. Drug delivery by polymer nanoparticles: the challenge of controlled release and evaluation. Polymer Nanoparticles for Nanomedicines: Springer; 2016. p. 439-503.

  95. Guo C, Wang J, Cao F, Lee RJ, Zhai G. Lyotropic liquid crystal systems in drug delivery. Drug Discov Today. 2010;15(23-24):1032–40.

    CAS  Google Scholar 

  96. Boyd BJ, Whittaker DV, Khoo S-M, Davey G. Hexosomes formed from glycerate surfactants—Formulation as a colloidal carrier for irinotecan. Int J Pharm. 2006;318(1-2):154–62.

    CAS  Google Scholar 

  97. Peng X, Wen X, Pan X, Wang R, Chen B, Wu C. Design and in vitro evaluation of capsaicin transdermal controlled release cubic phase gels. AAPS PharmSciTech. 2010;11(3):1405–10.

    CAS  Google Scholar 

  98. Lopes LB, Speretta FF, Bentley MVL. Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems. Eur J Pharm Sci. 2007;32(3):209–15.

    CAS  Google Scholar 

  99. Peng X, Zhou Y, Han K, Qin L, Dian L, Li G, et al. Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin. Drug Des Devel Ther. 2015;9:4209.

    CAS  Google Scholar 

  100. Prinsen M, Koëter H. Justification of the enucleated eye test with eyes of slaughterhouse animals as an alternative to the Draize eye irritation test with rabbits. Food Chem Toxicol. 1993;31(1):69–76.

    CAS  Google Scholar 

  101. Curren RD, Harbell JW. In vitro alternatives for ocular irritation. Environ Health Perspect. 1998;106(suppl 2):485–92.

    Google Scholar 

  102. Abdelkader H, Pierscionek B, Carew M, Wu Z, Alany R. Critical appraisal of alternative irritation models: three decades of testing ophthalmic pharmaceuticals. Br Med Bull. 2015;113:59–71.

    Google Scholar 

  103. Verstraelen S, Jacobs A, De Wever B, Vanparys P. Improvement of the Bovine Corneal Opacity and Permeability (BCOP) assay as an in vitro alternative to the Draize rabbit eye irritation test. Toxicol in Vitro. 2013;27(4):1298–311.

    CAS  Google Scholar 

  104. Harbell J, Raabe H, Dobson T, Evans M, Curren R. Histopathology associated with opacity and permeability changes in bovine corneas in vitro. ATLA-Nottingham. 1999;27:347.

    Google Scholar 

  105. Harbell J, Mun G, Curren R, eds. Application of histological evaluation to enhance the bovine opacity and permeability (BCOP) assay. The 45th Annual Society of Toxicology Meeting, San Diego, CA, USA; 2006.

  106. Sasaki H, Yamamura K, Nishida K, Nakamura J, Ichikawa M. Delivery of drugs to the eye by topical application. Prog Rettin Eye Res. 1996;15(2):583–620.

    CAS  Google Scholar 

  107. Maurice D, Mishima S. Ocular pharmacokinetics. Pharmacology of the Eye: Springer; 1984. p. 19-116.

  108. Li J-C, Zhu N, Zhu J-X, Zhang W-J, Zhang H-M, Wang Q-Q, et al. Self-assembled cubic liquid crystalline nanoparticles for transdermal delivery of paeonol. Med Sci Monit. 2015;21:3298.

    CAS  Google Scholar 

  109. Kassem M, Attia M, Safwat S, El-Mahdy M. Preparation and evaluation of hydrocortisone multiple emulsions in rabbit's eye. Pharm Ind. 1994;56(6):584–8.

    CAS  Google Scholar 

  110. Li Q, Peng B, Whitcup SM, Jang SU, Chan C-C. Endotoxin induced uveitis in the mouse: susceptibility and genetic control. Exp Eye Res. 1995;61(5):629–32.

    CAS  Google Scholar 

  111. Shen J, Gan L, Zhu C, Zhang X, Dong Y, Jiang M, et al. Novel NSAIDs ophthalmic formulation: flurbiprofen axetil emulsion with low irritancy and improved anti-inflammation effect. Int J Pharm. 2011;412(1-2):115–22.

    CAS  Google Scholar 

  112. Lallemand F, Felt-Baeyens O, Besseghir K, Behar-Cohen F, Gurny R. Cyclosporine A delivery to the eye: a pharmaceutical challenge. Eur J Pharm Biopharm. 2003;56(3):307–18.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamdy Abdelkader.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaballa, S.A., El Garhy, O.H., Moharram, H. et al. Preparation and Evaluation of Cubosomes/Cubosomal Gels for Ocular Delivery of Beclomethasone Dipropionate for Management of Uveitis. Pharm Res 37, 198 (2020). https://doi.org/10.1007/s11095-020-02857-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02857-1

Keywords

Navigation