Skip to main content

Advertisement

Log in

Chase Dosing of Lipid Formulations to Enhance Oral Bioavailability of Nilotinib in Rats

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Lipid-based formulations (LBF) have shown oral bioavailability enhancement of lipophilic drugs, but not necessarily in the case of hydrophobic drugs. This study explored the potential of lipid vehicles to improve the bioavailability of the hydrophobic drug nilotinib comparing a chase dosing approach and lipid suspensions.

Methods

Nilotinib in vivo bioavailability in rats was determined after administering an aqueous suspension chase dosed with blank olive oil, Captex 1000, Peceol or Capmul MCM, respectively. Absolute bioavailability was determined (relative to an intravenous formulation). Pharmacokinetic parameters were compared to lipid suspensions.

Results

Compared to the lipid suspensions, the chase dosed lipids showed a 2- to 7-fold higher bioavailability. Both long chain chase dosed excipients also significantly increased the bioavailability up to 2-fold compared to the aqueous suspension. Deconvolution of the pharmacokinetic data indicated that chase dosing of nilotinib resulted in prolonged absorption compared to the aqueous suspension.

Conclusion

Chase dosed LBF enhanced the in vivo bioavailability of nilotinib. Long chain lipids showed superior performance compared to medium chain lipids. Chase dosing appeared to prolong the absorption phase of the drug. Therefore, chase dosing of LBF is favourable compared to lipid suspensions for ‘brick dust’ molecules such as nilotinib.

The potential of bio-enabling lipid vehicles, administered via chase dosing and lipid suspensions, has been evaluated as an approach to enhance oral bioavailability of nilotinib.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MC:

Medium chain

LC:

Long chain

MG:

Monoglyceride

TG:

Triglyceride

LBF:

Lipid-based formulation

References

  1. Savla R, Browne J, Plassat V, Wasan KM, Wasan EK. Review and analysis of FDA approved drugs using lipid-based formulations. Drug Dev Ind Pharm. 2017:1–16.

  2. Feeney OM, Crum MF, McEvoy CL, Trevaskis NL, Williams HD, Pouton CW, et al. 50years of oral lipid-based formulations: provenance, progress and future perspectives. Adv Drug Deliv Rev. 2016;101:167–94.

    Article  CAS  PubMed  Google Scholar 

  3. O’Driscoll CM, Griffin BT. Biopharmaceutical challenges associated with drugs with low aqueous solubility--the potential impact of lipid-based formulations. Adv Drug Deliv Rev. 2008;60(6):617–24.

    Article  PubMed  Google Scholar 

  4. Humberstone AJ, Charman WN. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv Drug Deliver Rev. 1997;25(1):103–28.

    Article  CAS  Google Scholar 

  5. Alskar LC, Porter CJ, Bergstrom CA. Tools for early prediction of drug loading in lipid-based formulations. Mol Pharm. 2016;13(1):251–61.

    Article  PubMed  Google Scholar 

  6. Morgen M, Saxena A, Chen XQ, Miller W, Nkansah R, Goodwin A, et al. Lipophilic salts of poorly soluble compounds to enable high-dose lipidic SEDDS formulations in drug discovery. Eur J Pharm Biopharm. 2017;117:212–23.

    Article  CAS  PubMed  Google Scholar 

  7. Sahbaz Y, Williams HD, Nguyen TH, Saunders J, Ford L, Charman SA, et al. Transformation of poorly water-soluble drugs into lipophilic ionic liquids enhances oral drug exposure from lipid based formulations. Mol Pharm. 2015;12(6):1980–91.

    Article  CAS  PubMed  Google Scholar 

  8. Larsen A, Holm R, Pedersen ML, Mullertz A. Lipid-based formulations for Danazol containing a digestible surfactant, Labrafil M2125CS: in vivo bioavailability and dynamic in vitro lipolysis. Pharm Res-Dordr. 2008;25(12):2769–77.

    Article  CAS  Google Scholar 

  9. Dahan A, Hoffman A. The effect of different lipid based formulations on the oral absorption of lipophilic drugs: the ability of in vitro lipolysis and consecutive ex vivo intestinal permeability data to predict in vivo bioavailability in rats. Eur J Pharm Biopharm. 2007;67(1):96–105.

    Article  CAS  PubMed  Google Scholar 

  10. Larsen AT, Holm R, Mullertz A. Solution or suspension - does it matter for lipid based systems? In vivo studies of chase dosing lipid vehicles with aqueous suspensions of a poorly soluble drug. Eur J Pharm Biopharm. 2017;117:308–14.

    Article  CAS  PubMed  Google Scholar 

  11. Christiansen ML, Holm R, Abrahamsson B, Jacobsen J, Kristensen J, Andersen JR, et al. Effect of food intake and co-administration of placebo self-nanoemulsifying drug delivery systems on the absorption of cinnarizine in healthy human volunteers. Eur J Pharm Sci. 2016;84:77–82.

    Article  CAS  PubMed  Google Scholar 

  12. Thomas N, Richter K, Pedersen TB, Holm R, Mullertz A, Rades T. In vitro lipolysis data does not adequately predict the in vivo performance of lipid-based drug delivery systems containing fenofibrate. AAPS J. 2014;16(3):539–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carrigan PJ, Bates TR. Biopharmaceutics of drugs administered in lipid-containing dosage forms .1. Gi-Absorption of griseofulvin from an oil-in-water emulsion in rat. J Pharm Sci-Us. 1973;62(9):1476–9.

    Article  CAS  Google Scholar 

  14. Koehl NJ, Holm R, Kuentz M, Griffin BT. New insights into using lipid based suspensions for "brick dust' molecules: case study of nilotinib. Pharm Res-Dordr. 2019;36(4).

  15. Rolan PE, Mercer AJ, Weatherley BC, Holdich T, Meire H, Peck RW, et al. Examination of some factors responsible for a food-induced increase in absorption of atovaquone. Br J Clin Pharmacol. 1994;37(1):13–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alskar LC, Parrow A, Keemink J, Johansson P, Abrahamsson B, Bergstrom CAS. Effect of lipids on absorption of carvedilol in dogs: is coadministration of lipids as efficient as a lipid-based formulation? J Control Release. 2019;304:90–100.

    Article  PubMed  Google Scholar 

  17. ICH Guideline. Validation of analytical procedures: text and methodology Q2 (R1). In.International conference on harmonization, Geneva, Switzerland: ICH harmonised tripartite guideline; 2005.

  18. Langenbucher F, Mysicka J. Invitro and invivo deconvolution assessment of drug release kinetics from oxprenolol oros preparations. Brit J Clin Pharmaco. 1985;19:S151–62.

    Article  Google Scholar 

  19. Henze LJ, Griffin BT, Christiansen M, Bundgaard C, Langguth P, Holm R. Exploring gastric emptying rate in minipigs: effect of food type and pre-dosing of metoclopramide. Eur J Pharm Sci. 2018;118:183–90.

    Article  CAS  PubMed  Google Scholar 

  20. McLaughlin J, Lucà MG, Jones MN, D'Amato M, Dockray GJ, Thompson DG. Fatty acid chain length determines cholecystokinin secretion and effect on human gastric motility. Gastroenterology. 1999;116(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  21. McLaughlin JT, Lomax RB, Hall L, Dockray GJ, Thompson DG, Warhurst G. Fatty acids stimulate cholecystokinin secretion via an acyl chain length-specific, Ca2+−dependent mechanism in the enteroendocrine cell line STC-1. J Physiol. 1998;513(Pt 1):11–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231–48.

    Article  CAS  PubMed  Google Scholar 

  23. Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci. 2006;29(3–4):278–87.

    Article  CAS  PubMed  Google Scholar 

  24. Ditzinger F, Price DJ, Ilie AR, Kohl NJ, Jankovic S, Tsakiridou G, Aleandri S, Kalantzi L, Holm R, Nair A, Saal C, Griffin B, Kuentz M. Lipophilicity and hydrophobicity considerations in bio-enabling oral formulations approaches - a PEARRL review. J Pharm Pharmacol. 2018.

  25. Thomas N, Holm R, Garmer M, Karlsson JJ, Mullertz A, Rades T. Supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS) enhance the bioavailability of the poorly water-soluble drug simvastatin in dogs. AAPS J. 2013;15(1):219–27.

    Article  CAS  PubMed  Google Scholar 

  26. Thomas N, Holm R, Mullertz A, Rades T. In vitro and in vivo performance of novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). J Control Release. 2012;160(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  27. FDA. Nilotinib (Tasigna) - Clinical Pharmacology and Biopharmaceutics Review. U.S. Department of Health and Human Services. 2018 October 01. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2007/022068toc.cfm

  28. Kaukonen AM, Boyd BJ, Charman WN, Porter CJH. Drug solubilization behavior during in vitro digestion of suspension formulations of poorly water-soluble drugs in triglyceride lipids. Pharm Res-Dordr. 2004;21(2):254–60.

    Article  CAS  Google Scholar 

  29. Feinle C, Grundy D, Fried M. Modulation of gastric distension-induced sensations by small intestinal receptors. Am J Physiol Gastrointest Liver Physiol. 2001;280(1):G51–7.

    Article  CAS  PubMed  Google Scholar 

  30. Qualls-Creekmore E, Tong M, Holmes GM. Gastric emptying of enterally administered liquid meal in conscious rats and during sustained anaesthesia. Neurogastroenterol Motil. 2010;22(2):181–5.

    Article  CAS  PubMed  Google Scholar 

  31. O'Shea JP, Holm R, O'Driscoll CM, Griffin BT. Food for thought: formulating away the food effect - a PEARRL review. J Pharm Pharmacol. 2018.

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was kindly supported by funding from the Horizon 2020 Marie Sklodowska-Curie Innovative Training Networks programme under grant agreement No. 674909. The authors are part of the PEARRL European Training network, which is funded under this MSCA programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan T. Griffin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koehl, N.J., Holm, R., Kuentz, M. et al. Chase Dosing of Lipid Formulations to Enhance Oral Bioavailability of Nilotinib in Rats. Pharm Res 37, 124 (2020). https://doi.org/10.1007/s11095-020-02841-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02841-9

Key Words

Navigation