Skip to main content

Advertisement

Log in

Tuning the Physicochemical Characteristics of Particle-Based Carriers for Intraperitoneal Local Chemotherapy

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Over the last few decades, intraperitoneal (IP) local drug delivery, providing high drug concentrations with prolonged retention in the peritoneal cavity, has opened a new horizon for the management of life-threatening peritoneal disorders, such as peritoneal carcinomatosis (PC). However, clinical translation of this strategy is hampered by several hurdles, namely premature clearance of small-sized molecules from the peritoneum, limited distribution within the peritoneal space and inadequate penetration into the target tissues. To address these challenges, incorporation of therapeutic agents into the particulate-based drug delivery systems has brought new hope in this direction. Nonetheless, as yet, there has been no formulation specifically approved for IP delivery. To gain this goal, it is crucial to have a detailed understanding of the correlation between the physicochemical characteristics of particle-based carriers and their biological fate and anticancer efficacy after IP administration. The main focus of this review, therefore, concerns the significance of these characteristics, namely composition, particle size, charge, coating and presence of targeting moieties in the design of carriers for successful IP delivery.

Physicochemical characteristics of particle-based carriers influence their peritoneal residence time, biological fate and anticancer efficacy after intraperitoneal administration

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pannu HK, Oliphant M. The subperitoneal space and peritoneal cavity: basic concepts. Abdom Imaging. 2015;40(7):2710–22.

    PubMed  PubMed Central  Google Scholar 

  2. Coccolini F, Gheza F, Lotti M, Virzi S, Iusco D, Ghermandi C, et al. Peritoneal carcinomatosis. World J Gastroenterol. 2013;19(41):6979–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Raptopoulos V, Gourtsoyiannis N. Peritoneal carcinomatosis. Eur Radiol. 2001;11(11):2195–206.

    CAS  PubMed  Google Scholar 

  4. Kusamura S, Baratti D, Zaffaroni N, Villa R, Laterza B, Balestra MR, et al. Pathophysiology and biology of peritoneal carcinomatosis. World J Gastrointest Oncol. 2010;2(1):12–8.

    PubMed  PubMed Central  Google Scholar 

  5. Jayne D. Molecular biology of peritoneal carcinomatosis. Cancer Treat Res. 2007;134:21–33.

    CAS  PubMed  Google Scholar 

  6. Lambert LA. Looking up: Recent advances in understanding and treating peritoneal carcinomatosis. CA Cancer J Clin. 2015;65(4):284–98.

    PubMed  Google Scholar 

  7. Jayne DG, Fook S, Loi C, Seow-Choen F. Peritoneal carcinomatosis from colorectal cancer. Br J Surg. 2002;89(12):1545–50.

    CAS  PubMed  Google Scholar 

  8. Sadeghi B, Arvieux C, Glehen O, Beaujard AC, Rivoire M, Baulieux J, et al. Peritoneal carcinomatosis from non-gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study. Cancer. 2000;88(2):358–63.

    CAS  PubMed  Google Scholar 

  9. Bloemendaal AL, Verwaal VJ, van Ruth S, Boot H, Zoetmulder FA. Conventional surgery and systemic chemotherapy for peritoneal carcinomatosis of colorectal origin: a prospective study. Eur J Surg Oncol. 2005;31(10):1145–51.

    CAS  PubMed  Google Scholar 

  10. Goere D, Malka D, Tzanis D, Gava V, Boige V, Eveno C, et al. Is there a possibility of a cure in patients with colorectal peritoneal carcinomatosis amenable to complete cytoreductive surgery and intraperitoneal chemotherapy? Ann Surg. 2013;257(6):1065–71.

    PubMed  Google Scholar 

  11. Alberts DS, Liu PY, Hannigan EV, O'Toole R, Williams SD, Young JA, et al. Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N Engl J Med. 1996;335(26):1950–5.

    CAS  PubMed  Google Scholar 

  12. Armstrong D, Bundy B, Baergen R, Lele S, Copeland L, Walker J, et al., editors. Randomized phase III study of intravenous (IV) paclitaxel and cisplatin versus IV paclitaxel, intraperitoneal (IP) cisplatin and IP paclitaxel in optimal stage III epithelial ovarian cancer (OC): a Gynecologic Oncology Group trial (GOG 172). Proc Am Soc Clin Oncol; 2002.

  13. Markman M, Bundy BN, Alberts DS, Fowler JM, Clark-Pearson DL, Carson LF, et al. Phase III trial of standard-dose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small-volume stage III ovarian carcinoma: an intergroup study of the Gynecologic Oncology Group, Southwestern Oncology Group, and Eastern Cooperative Oncology Group. J Clin Oncol. 2001;19(4):1001–7.

    CAS  PubMed  Google Scholar 

  14. Lindner P, Heath DD, Shalinsky DR, Howell SB, Naredi P, Hafstrom L. Regional lymphatic drug exposure following intraperitoneal administration of 5-fluorouracil, carboplatin, and etoposide. Surg Oncol. 1993;2(2):105–12.

    CAS  PubMed  Google Scholar 

  15. Speyer JL. Intraperitoneal chemotherapy: a possible role in the treatment of hepatic metastases. In: Bettino JC, Opfell RW, Muggia FM, editors. Liver Cancer. Boston: Martinus Nijhoff Publishing; 1985. p. 225–35.

    Google Scholar 

  16. Mok S, Schorge J, Welch W, Hendricksen M, Kempson R. Peritoneal tumours. In: Tavassoli FA, Devilee P, editors. Pathology and genetics of tumours of the breast and female genital organs. Lyon: IARC; 2003. p. 197–202.

    Google Scholar 

  17. Levy AD, Arnaiz J, Shaw JC, Sobin LH. From the archives of the AFIP: primary peritoneal tumors: imaging features with pathologic correlation. Radiographics. 2008;28(2):583–607.

    PubMed  Google Scholar 

  18. Munkholm-Larsen S, Cao CQ, Yan TD. Malignant peritoneal mesothelioma. World J Gastrointest Surg. 2009;1(1):38–48.

    PubMed  PubMed Central  Google Scholar 

  19. Raza A, Huang W-C, Takabe K. Advances in the management of peritoneal mesothelioma. World J Gastroenterol. 2014;20(33):11700–12.

    PubMed  PubMed Central  Google Scholar 

  20. Gadducci A, Cosio S, Conte PF, Genazzani AR. Consolidation and maintenance treatments for patients with advanced epithelial ovarian cancer in complete response after first-line chemotherapy: a review of the literature. Crit Rev Oncol Hematol. 2005;55(2):153–66.

    PubMed  Google Scholar 

  21. Ozols RF. Treatment goals in ovarian cancer. Int J Gynecol Cancer. 2005;15(Suppl 1):3–11.

    PubMed  Google Scholar 

  22. Oei AL, Verheijen RH, Seiden MV, Benigno BB, Lopes A, Soper JT, et al. Decreased intraperitoneal disease recurrence in epithelial ovarian cancer patients receiving intraperitoneal consolidation treatment with yttrium-90-labeled murine HMFG1 without improvement in overall survival. Int J Cancer. 2007;120(12):2710–4.

    CAS  PubMed  Google Scholar 

  23. Morgan RJ Jr, Alvarez RD, Armstrong DK, Boston B, Chen LM, Copeland L, et al. Ovarian cancer. Clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2008;6(8):766–94.

    CAS  PubMed  Google Scholar 

  24. Auer K, Bachmayr-Heyda A, Aust S, Sukhbaatar N, Reiner AT, Grimm C, et al. Peritoneal tumor spread in serous ovarian cancer-epithelial mesenchymal status and outcome. Oncotarget. 2015;6(19):17261–75.

    PubMed  PubMed Central  Google Scholar 

  25. Yeung TL, Leung CS, Yip KP, Au Yeung CL, Wong ST, Mok SC. Cellular and molecular processes in ovarian cancer metastasis. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. Am J Physiol Cell Physiol. 2015;309(7):C444–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mitra AK. Ovarian cancer metastasis: a unique mechanism of dissemination. In: Xu K, editor. Tumor Metastasis. Rijeka: InTech; 2016. p. 43–58.

    Google Scholar 

  27. Young RC, Decker DG, Wharton JT, Piver MS, Sindelar WF, Edwards BK, et al. Staging laparotomy in early ovarian cancer. JAMA. 1983;250(22):3072–6.

    CAS  PubMed  Google Scholar 

  28. Carmignani CP, Sugarbaker TA, Bromley CM, Sugarbaker PH. Intraperitoneal cancer dissemination: mechanisms of the patterns of spread. Cancer Metastasis Rev. 2003;22(4):465–72.

    PubMed  Google Scholar 

  29. Naora H, Montell DJ. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat Rev Cancer. 2005;5(5):355–66.

    CAS  PubMed  Google Scholar 

  30. Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177(3):1053–64.

    PubMed  PubMed Central  Google Scholar 

  31. Pradeep S, Kim SW, Wu SY, Nishimura M, Chaluvally-Raghavan P, Miyake T, et al. Hematogenous metastasis of ovarian cancer: rethinking mode of spread. Cancer Cell. 2014;26(1):77–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sugarbaker PH, Yonemura Y. Clinical pathway for the management of resectable gastric cancer with peritoneal seeding: best palliation with a ray of hope for cure. Oncology. 2000;58(2):96–107.

    CAS  PubMed  Google Scholar 

  33. Bando E, Yonemura Y, Takeshita Y, Taniguchi K, Yasui T, Yoshimitsu Y, et al. Intraoperative lavage for cytological examination in 1,297 patients with gastric carcinoma. Am J Surg. 1999;178(3):256–62.

    CAS  PubMed  Google Scholar 

  34. Yonemura Y, Bandou E, Kinoshita K, Kawamura T, Takahashi S, Endou Y, et al. Effective therapy for peritoneal dissemination in gastric cancer. Surg Oncol Clin N Am. 2003;12(3):635–48.

    PubMed  Google Scholar 

  35. Huang B, Sun Z, Wang Z, Lu C, Xing C, Zhao B, et al. Factors associated with peritoneal metastasis in non-serosa-invasive gastric cancer: a retrospective study of a prospectively-collected database. BMC Cancer. 2013;13:57.

    PubMed  PubMed Central  Google Scholar 

  36. Hara M, Nakanishi H, Jun Q, Kanemitsu Y, Ito S, Mochizuki Y, et al. Comparative analysis of intraperitoneal minimal free cancer cells between colorectal and gastric cancer patients using quantitative RT-PCR: possible reason for rare peritoneal recurrence in colorectal cancer. Clin Exp Metastasis. 2007;24(3):179–89.

    PubMed  Google Scholar 

  37. Gomez Portilla A, Cendoya I. Lopez de Tejada I, Olabarria I, Martinez de Lecea C, Magrach L, et al. Peritoneal carcinomatosis of colorectal origin. Current treatment. Review and update. Rev Esp Enferm Dig. 2005;97(10):716–37.

    CAS  PubMed  Google Scholar 

  38. Yan TD, Black D, Savady R, Sugarbaker PH. Systematic review on the efficacy of cytoreductive surgery combined with perioperative intraperitoneal chemotherapy for peritoneal carcinomatosis from colorectal carcinoma. J Clin Oncol. 2006;24(24):4011–9.

    PubMed  Google Scholar 

  39. Verwaal VJ, van Ruth S, Witkamp A, Boot H, van Slooten G, Zoetmulder FA. Long-term survival of peritoneal carcinomatosis of colorectal origin. Ann Surg Oncol. 2005;12(1):65–71.

    PubMed  Google Scholar 

  40. Koppe MJ, Boerman OC, Oyen WJ, Bleichrodt RP. Peritoneal carcinomatosis of colorectal origin: incidence and current treatment strategies. Ann Surg. 2006;243(2):212–22.

    PubMed  PubMed Central  Google Scholar 

  41. Kitayama J. Intraperitoneal chemotherapy against peritoneal carcinomatosis: current status and future perspective. Surg Oncol. 2014;23(2):99–106.

    PubMed  Google Scholar 

  42. Flessner MF. The transport barrier in intraperitoneal therapy. Am J Physiol Renal Physiol. 2005;288(3):F433–42.

    CAS  PubMed  Google Scholar 

  43. Hasovits C, Clarke S. Pharmacokinetics and pharmacodynamics of intraperitoneal cancer chemotherapeutics. Clin Pharmacokinet. 2012;51(4):203–24.

    CAS  PubMed  Google Scholar 

  44. Jacquet P, Sugarbaker PH. Peritoneal-plasma barrier. Cancer Treat Res. 1996;82:53–63.

    CAS  PubMed  Google Scholar 

  45. Bajaj G, Yeo Y. Drug delivery systems for intraperitoneal therapy. Pharm Res. 2010;27(5):735–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu Rev Chem Biomol Eng. 2011;2:281–98.

    CAS  PubMed  Google Scholar 

  47. Walker JL, Armstrong DK, Huang HQ, Fowler J, Webster K, Burger RA, et al. Intraperitoneal catheter outcomes in a phase III trial of intravenous versus intraperitoneal chemotherapy in optimal stage III ovarian and primary peritoneal cancer: a Gynecologic Oncology Group Study. Gynecol Oncol. 2006;100(1):27–32.

    PubMed  Google Scholar 

  48. Chaudhary K, Haddadin S, Nistala R, Papageorgio C. Intraperitoneal drug therapy: an advantage. Curr Clin Pharmacol. 2010;5(2):82–8.

    CAS  PubMed  Google Scholar 

  49. Au JL, Lu Z, Wientjes MG. Versatility of Particulate Carriers: Development of Pharmacodynamically Optimized Drug-Loaded Microparticles for Treatment of Peritoneal Cancer. AAPS J. 2015;17(5):1065–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Supersaxo A, Hein WR, Steffen H. Mixed micelles as a proliposomal, lymphotropic drug carrier. Pharm Res. 1991;8(10):1286–91.

    CAS  PubMed  Google Scholar 

  51. Markman M. Intraperitoneal chemotherapy. Semin Oncol. 1991;18(3):248–54.

    CAS  PubMed  Google Scholar 

  52. Fukumura D, Jain RK. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res. 2007;74(2-3):72–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fujiwara K, Armstrong D, Morgan M, Markman M. Principles and practice of intraperitoneal chemotherapy for ovarian cancer. Int J Gynecol Cancer. 2007;17(1):1–20.

    CAS  PubMed  Google Scholar 

  54. Chen Z, Shi T, Zhang L, Zhu P, Deng M, Huang C, et al. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016;370(1):153–64.

    CAS  PubMed  Google Scholar 

  55. Ripamonti CI, Easson AM, Gerdes H. Management of malignant bowel obstruction. Eur J Cancer. 2008;44(8):1105–15.

    PubMed  Google Scholar 

  56. Markman M, Rowinsky E, Hakes T, Reichman B, Jones W, Lewis JL Jr, et al. Phase I trial of intraperitoneal taxol: a Gynecoloic Oncology Group study. J Clin Oncol. 1992;10(9):1485–91.

    CAS  PubMed  Google Scholar 

  57. Elias DM, Sideris L. Pharmacokinetics of heated intraoperative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis. Surg Oncol Clin N Am. 2003;12(3):755–69 xiv.

    PubMed  Google Scholar 

  58. Wenzel LB, Huang HQ, Armstrong DK, Walker JL, Cella D. Health-related quality of life during and after intraperitoneal versus intravenous chemotherapy for optimally debulked ovarian cancer: a Gynecologic Oncology Group Study. J Clin Oncol. 2007;25(4):437–43.

    CAS  PubMed  Google Scholar 

  59. Lu Z, Wang J, Wientjes MG, Au JL. Intraperitoneal therapy for peritoneal cancer. Future Oncol. 2010;6(10):1625–41.

    PubMed  PubMed Central  Google Scholar 

  60. Chatelut E, Suh P, Kim S. Sustained-release methotrexate for intracavitary chemotherapy. J Pharm Sci. 1994;83(3):429–32.

    CAS  PubMed  Google Scholar 

  61. Sadzuka Y, Hirota S, Sonobe T. Intraperitoneal administration of doxorubicin encapsulating liposomes against peritoneal dissemination. Toxicol Lett. 2000;116(1-2):51–9.

    CAS  PubMed  Google Scholar 

  62. Williamson SK, Johnson GA, Maulhardt HA, Moore KM, McMeekin DS, Schulz TK, et al. A phase I study of intraperitoneal nanoparticulate paclitaxel (Nanotax®) in patients with peritoneal malignancies. Cancer Chemother Pharmacol. 2015;75(5):1075–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Daeihamed M, Haeri A, Ostad SN, Akhlaghi MF, Dadashzadeh S. Doxorubicin-loaded liposomes: enhancing the oral bioavailability by modulation of physicochemical characteristics. Nanomedicine (Lond). 2017;12(10):1187–202.

    CAS  PubMed  Google Scholar 

  64. Nowroozi F, Dadashzadeh S, Soleimanjahi H, Haeri A, Shahhosseini S, Javidi J, et al. Theranostic niosomes for direct intratumoral injection: marked enhancement in tumor retention and anticancer efficacy. Nanomedicine (Lond). 2018;13(17):2201–19.

    CAS  PubMed  Google Scholar 

  65. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005;19(3):311–30.

    CAS  PubMed  Google Scholar 

  66. Hirano K, Hunt CA. Lymphatic transport of liposome-encapsulated agents: effects of liposome size following intraperitoneal administration. J Pharm Sci. 1985;74(9):915–21.

    CAS  PubMed  Google Scholar 

  67. Kohane DS, Tse JY, Yeo Y, Padera R, Shubina M, Langer R. Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J Biomed Mater Res A. 2006;77(2):351–61.

    PubMed  Google Scholar 

  68. Ernsting MJ, Murakami M, Roy A, Li SD. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release. 2013;172(3):782–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Tsai M, Lu Z, Wang J, Yeh TK, Wientjes MG, Au JL. Effects of carrier on disposition and antitumor activity of intraperitoneal Paclitaxel. Pharm Res. 2007;24(9):1691–701.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Armstrong DK, Fleming GF, Markman M, Bailey HH. A phase I trial of intraperitoneal sustained-release paclitaxel microspheres (Paclimer) in recurrent ovarian cancer: a Gynecologic Oncology Group study. Gynecol Oncol. 2006;103(2):391–6.

    CAS  PubMed  Google Scholar 

  71. Lu Z, Tsai M, Lu D, Wang J, Wientjes MG, Au JL. Tumor-penetrating microparticles for intraperitoneal therapy of ovarian cancer. J Pharmacol Exp Ther. 2008;327(3):673–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dakwar GR, Shariati M, Willaert W, Ceelen W, De Smedt SC, Remaut K. Nanomedicine-based intraperitoneal therapy for the treatment of peritoneal carcinomatosis—Mission possible? Adv Drug Deliv Rev. 2017;108:13–24.

    CAS  PubMed  Google Scholar 

  73. Mirahmadi N, Babaei MH, Vali AM, Dadashzadeh S. Effect of liposome size on peritoneal retention and organ distribution after intraperitoneal injection in mice. Int J Pharm. 2010;383(1-2):7–13.

    CAS  PubMed  Google Scholar 

  74. Ye H, Tanenbaum LM, Na YJ, Mantzavinou A, Fulci G, Del Carmen MG, et al. Sustained, low-dose intraperitoneal cisplatin improves treatment outcome in ovarian cancer mouse models. J Control Release. 2015;220(Pt A):358-367.

  75. Padmakumar S, Paul-Prasanth B, Pavithran K, Vijaykumar DK, Rajanbabu A, Sivanarayanan TB, et al. Long-term drug delivery using implantable electrospun woven polymeric nanotextiles. Nanomedicine. 2019;15(1):274–84.

    CAS  PubMed  Google Scholar 

  76. Padmakumar S, Parayath NN, Nair SV, Menon D, Amiji MM. Enhanced anti-tumor efficacy and safety with metronomic intraperitoneal chemotherapy for metastatic ovarian cancer using biodegradable nanotextile implants. J Control Release. 2019;305:29–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lim Soo P, Cho J, Grant J, Ho E, Piquette-Miller M, Allen C. Drug release mechanism of paclitaxel from a chitosan-lipid implant system: effect of swelling, degradation and morphology. Eur J Pharm Biopharm. 2008;69(1):149–57.

    CAS  PubMed  Google Scholar 

  78. Alinaghi A, Rouini MR, Johari Daha F, Moghimi HR. The influence of lipid composition and surface charge on biodistribution of intact liposomes releasing from hydrogel-embedded vesicles. Int J Pharm. 2014;459(1-2):30–9.

    CAS  PubMed  Google Scholar 

  79. Cho EJ, Sun B, Doh KO, Wilson EM, Torregrosa-Allen S, Elzey BD, et al. Intraperitoneal delivery of platinum with in-situ crosslinkable hyaluronic acid gel for local therapy of ovarian cancer. Biomaterials. 2015;37:312–9.

    CAS  PubMed  Google Scholar 

  80. Fan R, Tong A, Li X, Gao X, Mei L, Zhou L, et al. Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer. Int J Nanomedicine. 2015;10:7291–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Dadashzadeh S, Mirahmadi N, Babaei MH, Vali AM. Peritoneal retention of liposomes: Effects of lipid composition, PEG coating and liposome charge. J Control Release. 2010;148(2):177–86.

    CAS  PubMed  Google Scholar 

  82. Ohtsuka A, Murakami T. Anionic sites on the free surface of the peritoneal mesothelium: light and electron microscopic detection using cationic colloidal iron. Arch Histol Cytol. 1994;57(4):307–15.

    CAS  PubMed  Google Scholar 

  83. Aramaki Y, Akiyama K, Hara T, Tsuchiya S. Recognition of charged liposomes by rat peritoneal and splenic macrophages: effects of fibronectin on the uptake of charged liposomes. Eur J Pharm Sci. 1995;3(2):63–70.

    CAS  Google Scholar 

  84. Allen T. The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Adv Drug Deliv Rev. 1994;13(3):285–309.

    CAS  Google Scholar 

  85. Vonarbourg A, Passirani C, Saulnier P, Simard P, Leroux JC, Benoit JP. Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater Res A. 2006;78(3):620–8.

    CAS  PubMed  Google Scholar 

  86. Levchenko TS, Rammohan R, Lukyanov AN, Whiteman KR, Torchilin VP. Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int J Pharm. 2002;240(1-2):95–102.

    CAS  PubMed  Google Scholar 

  87. Dakwar GR, Zagato E, Delanghe J, Hobel S, Aigner A, Denys H, et al. Colloidal stability of nano-sized particles in the peritoneal fluid: towards optimizing drug delivery systems for intraperitoneal therapy. Acta Biomater. 2014;10(7):2965–75.

    CAS  PubMed  Google Scholar 

  88. Walkey CD, Chan WC. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41(7):2780–99.

    CAS  PubMed  Google Scholar 

  89. Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine. 2005;1(3):193–212.

    CAS  PubMed  Google Scholar 

  90. Gabizon A, Tzemach D, Gorin J, Mak L, Amitay Y, Shmeeda H, et al. Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models. Cancer Chemother Pharmacol. 2010;66(1):43–52.

    CAS  PubMed  Google Scholar 

  91. Li SD, Howell SB. CD44-targeted microparticles for delivery of cisplatin to peritoneal metastases. Mol Pharm. 2010;7(1):280–90.

    CAS  PubMed  Google Scholar 

  92. Nowacki M, Wisniewski M, Werengowska-Ciecwierz K, Roszek K, Czarnecka J, Lakomska I, et al. Nanovehicles as a novel target strategy for hyperthermic intraperitoneal chemotherapy: a multidisciplinary study of peritoneal carcinomatosis. Oncotarget. 2015;6(26):22776–98.

    PubMed  PubMed Central  Google Scholar 

  93. Sofou S, Enmon R, Palm S, Kappel B, Zanzonico P, McDevitt MR, et al. Large anti-HER2/neu liposomes for potential targeted intraperitoneal therapy of micrometastatic cancer. J Liposome Res. 2010;20(4):330–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol. 2010;197:3–53.

    CAS  Google Scholar 

  95. Werner ME, Karve S, Sukumar R, Cummings ND, Copp JA, Chen RC, et al. Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials. 2011;32(33):8548–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Fondell A, Edwards K, Unga J, Kullberg E, Park JW, Gedda L. In vitro evaluation and biodistribution of HER2-targeted liposomes loaded with an (125)I-labelled DNA-intercalator. J Drug Target. 2011;19(9):846–55.

    CAS  PubMed  Google Scholar 

  97. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157(2):220–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhao N, Qin Y, Liu H, Cheng Z. Tumor-Targeting Peptides: Ligands for Molecular Imaging and Therapy. Anticancer Agents Med Chem. 2018;18(1):74–86.

    CAS  PubMed  Google Scholar 

  99. Simon-Gracia L, Hunt H, Scodeller P, Gaitzsch J, Kotamraju VR, Sugahara KN, et al. iRGD peptide conjugation potentiates intraperitoneal tumor delivery of paclitaxel with polymersomes. Biomaterials. 2016;104:247–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Choi MR, Stanton-Maxey KJ, Stanley JK, Levin CS, Bardhan R, Akin D, et al. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 2007;7(12):3759–65.

    CAS  PubMed  Google Scholar 

  101. Anselmo AC, Mitragotri S. Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles. J Control Release. 2014;190:531–41.

    CAS  PubMed  Google Scholar 

  102. Ikehara Y, Niwa T, Biao L, Ikehara SK, Ohashi N, Kobayashi T, et al. A carbohydrate recognition-based drug delivery and controlled release system using intraperitoneal macrophages as a cellular vehicle. Cancer Res. 2006;66(17):8740–8.

    CAS  PubMed  Google Scholar 

  103. Ceelen WP, Flessner MF. Intraperitoneal therapy for peritoneal tumors: biophysics and clinical evidence. Nat Rev Clin Oncol. 2010;7(2):108–15.

    PubMed  Google Scholar 

  104. Devilee RA, Simkens GA, van Oudheusden TR, Rutten HJ, Creemers GJ, Ten Tije AJ, et al. Increased Survival of Patients with Synchronous Colorectal Peritoneal Metastases Receiving Preoperative Chemotherapy Before Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy. Ann Surg Oncol. 2016;23(9):2841–8.

    CAS  PubMed  Google Scholar 

  105. Chang SJ, Hodeib M, Chang J, Bristow RE. Survival impact of complete cytoreduction to no gross residual disease for advanced-stage ovarian cancer: a meta-analysis. Gynecol Oncol. 2013;130(3):493–8.

    PubMed  Google Scholar 

  106. Pilati P, Mocellin S, Rossi CR, Foletto M, Campana L, Nitti D, et al. Cytoreductive surgery combined with hyperthermic intraperitoneal intraoperative chemotherapy for peritoneal carcinomatosis arising from colon adenocarcinoma. Ann Surg Oncol. 2003;10(5):508–13.

    PubMed  Google Scholar 

  107. Piso P, Dahlke MH, Loss M, Schlitt HJ. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in peritoneal carcinomatosis from ovarian cancer. World J Surg Oncol. 2004;2:21.

    PubMed  PubMed Central  Google Scholar 

  108. Al-Shammaa HA, Li Y, Yonemura Y. Current status and future strategies of cytoreductive surgery plus intraperitoneal hyperthermic chemotherapy for peritoneal carcinomatosis. World J Gastroenterol. 2008;14(8):1159–66.

    PubMed  PubMed Central  Google Scholar 

  109. Yang XJ, Huang CQ, Suo T, Mei LJ, Yang GL, Cheng FL, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy improves survival of patients with peritoneal carcinomatosis from gastric cancer: final results of a phase III randomized clinical trial. Ann Surg Oncol. 2011;18(6):1575–81.

    PubMed  PubMed Central  Google Scholar 

  110. Brucher BL, Piso P, Verwaal V, Esquivel J, Derraco M, Yonemura Y, et al. Peritoneal carcinomatosis: cytoreductive surgery and HIPEC--overview and basics. Cancer Invest. 2012;30(3):209–24.

    PubMed  Google Scholar 

  111. Issels RD. Hyperthermia adds to chemotherapy. Eur J Cancer. 2008;44(17):2546–54.

    CAS  PubMed  Google Scholar 

  112. Sun X, Li XF, Russell J, Xing L, Urano M, Li GC, et al. Changes in tumor hypoxia induced by mild temperature hyperthermia as assessed by dual-tracer immunohistochemistry. Radiother Oncol. 2008;88(2):269–76.

    PubMed  PubMed Central  Google Scholar 

  113. Los G, Sminia P, Wondergem J, Mutsaers PH, Havemen J, ten Bokkel HD, et al. Optimisation of intraperitoneal cisplatin therapy with regional hyperthermia in rats. Eur J Cancer. 1991;27(4):472–7.

    CAS  PubMed  Google Scholar 

  114. Gremonprez F, Gossye H, Ceelen W. Use of hyperthermia versus normothermia during intraperitoneal chemoperfusion with oxaliplatin for colorectal peritoneal carcinomatosis: A propensity score matched analysis. Eur J Surg Oncol. 2019;45(3):366–70.

    PubMed  Google Scholar 

  115. Hesdorffer ME, Chabot JA, Keohan ML, Fountain K, Talbot S, Gabay M, et al. Combined resection, intraperitoneal chemotherapy, and whole abdominal radiation for the treatment of malignant peritoneal mesothelioma. Am J Clin Oncol. 2008;31(1):49–54.

    CAS  PubMed  Google Scholar 

  116. Sugarbaker PH, Cunliffe WJ, Belliveau J, de Bruijn EA, Graves T, Mullins RE, et al. Rationale for integrating early postoperative intraperitoneal chemotherapy into the surgical treatment of gastrointestinal cancer. Semin Oncol. 1989;16(4 Suppl 6):83–97.

    CAS  PubMed  Google Scholar 

  117. Sugarbaker PH, Graves T, DeBruijn EA, Cunliffe WJ, Mullins RE, Hull WE, et al. Early postoperative intraperitoneal chemotherapy as an adjuvant therapy to surgery for peritoneal carcinomatosis from gastrointestinal cancer: pharmacological studies. Cancer Res. 1990;50(18):5790–4.

    CAS  PubMed  Google Scholar 

  118. Yu W, Whang I, Suh I, Averbach A, Chang D, Sugarbaker PH. Prospective randomized trial of early postoperative intraperitoneal chemotherapy as an adjuvant to resectable gastric cancer. Ann Surg. 1998;228(3):347–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Cazauran JB, Alyami M, Lasseur A, Gybels I, Glehen O, Bakrin N. Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) Procedure for Non-resectable Peritoneal Carcinomatosis (with Video). J Gastrointest Surg. 2018;22(2):374–5.

    PubMed  Google Scholar 

  120. Hornung M, Werner JM, Schlitt HJ. Applications of hyperthermic intraperitoneal chemotherapy for metastatic colorectal cancer. Expert Rev Anticancer Ther. 2017;17(9):841–50.

    CAS  PubMed  Google Scholar 

  121. Grass F, Vuagniaux A, Teixeira-Farinha H, Lehmann K, Demartines N, Hubner M. Systematic review of pressurized intraperitoneal aerosol chemotherapy for the treatment of advanced peritoneal carcinomatosis. Br J Surg. 2017;104(6):669–78.

    CAS  PubMed  Google Scholar 

  122. Reymond MA, Solass W, Nadiradze G, Horvath P, Königsrainer A. Pressurized intraperitoneal aerosol chemotherapy (PIPAC). In: Fong Y, Gamblin TC, Han E, Lee B, editors. Zager JS, editors. Cancer Regional Therapy: Springer; 2020. p. 235–43.

    Google Scholar 

  123. De Smet L, Colin P, Ceelen W, Bracke M, Van Bocxlaer J, Remon JP, et al. Development of a nanocrystalline Paclitaxel formulation for HIPEC treatment. Pharm Res. 2012;29(9):2398–406.

    PubMed  Google Scholar 

  124. Harrison LE, Bryan M, Pliner L, Saunders T. Phase I trial of pegylated liposomal doxorubicin with hyperthermic intraperitoneal chemotherapy in patients undergoing cytoreduction for advanced intra-abdominal malignancy. Ann Surg Oncol. 2008;15(5):1407–13.

    PubMed  Google Scholar 

  125. Salvatorelli E, De Tursi M, Menna P, Carella C, Massari R, Colasante A, et al. Pharmacokinetics of pegylated liposomal doxorubicin administered by intraoperative hyperthermic intraperitoneal chemotherapy to patients with advanced ovarian cancer and peritoneal carcinomatosis. Drug Metab Dispos. 2012;40(12):2365–73.

    CAS  PubMed  Google Scholar 

  126. De Tursi M, Salvatorelli E, Carella C, Bianco N, Massari R, Sacco R, et al. The use of pegylated liposomal doxorubicin with hyperthermic intraperitoneal chemotherapy (HIPEC) in patients undergoing cytoreductive surgery (CS) for peritoneal carcinomatosis of ovarian origin. J Clin Oncol. 2010;28(15_suppl):5040-5040.

  127. Minnaert AK, Dakwar GR, Benito JM, García Fernández JM, Ceelen W, De Smedt SC, et al. High-Pressure Nebulization as Application Route for the Peritoneal Administration of siRNA Complexes. Macromol Biosci. 2017;17(10):1700024.

    Google Scholar 

  128. Shariati M, Zhang H, Van de Sande L, Descamps B, Vanhove C, Willaert W, et al. High Pressure Nebulization (PIPAC) Versus Injection for the Intraperitoneal Administration of mRNA Complexes. Pharm Res. 2019;36(9):126.

    PubMed  Google Scholar 

  129. Van De Sande L, Graversen M, Hubner M, Pocard M, Reymond M, Vaira M, et al. Intraperitoneal aerosolization of albumin-stabilized paclitaxel nanoparticles (Abraxane) for peritoneal carcinomatosis - a phase I first-in-human study. Pleura Peritoneum. 2018;3(2):20180112.

    Google Scholar 

  130. Noorani L, Stenzel M, Liang R, Pourgholami MH, Morris DL. Albumin nanoparticles increase the anticancer efficacy of albendazole in ovarian cancer xenograft model. J Nanobiotechnology. 2015;13:25.

    PubMed  PubMed Central  Google Scholar 

  131. Tsai M, Lu Z, Wientjes MG, Au JL. Paclitaxel-loaded polymeric microparticles: quantitative relationships between in vitro drug release rate and in vivo pharmacodynamics. J Control Release. 2013;172(3):737–44.

    CAS  PubMed  Google Scholar 

  132. Yoshikawa H, Nakao Y, Takada K, Muranishi S, Wada R, Tabata Y, et al. Targeted and sustained delivery of aclarubicin to lymphatics by lactic acid-oligomer microsphere in rat. Chem Pharm Bull (Tokyo). 1989;37(3):802–4.

    CAS  PubMed  Google Scholar 

  133. Matsui H, Sato Y, Hatakeyama H, Akita H, Harashima H. Size-dependent specific targeting and efficient gene silencing in peritoneal macrophages using a pH-sensitive cationic liposomal siRNA carrier. Int J Pharm. 2015;495(1):171–8.

    CAS  PubMed  Google Scholar 

  134. Liu J, Meisner D, Kwong E, Wu XY, Johnston MR. A novel trans-lymphatic drug delivery system: implantable gelatin sponge impregnated with PLGA-paclitaxel microspheres. Biomaterials. 2007;28(21):3236–44.

    CAS  PubMed  Google Scholar 

  135. Liu L, Wu Q, Ma X, Xiong D, Gong C, Qian Z, et al. Camptothecine encapsulated composite drug delivery system for colorectal peritoneal carcinomatosis therapy: biodegradable microsphere in thermosensitive hydrogel. Colloids Surf B Biointerfaces. 2013;106:93–101.

    CAS  PubMed  Google Scholar 

  136. Yun Q, Wang SS, Xu S, Yang JP, Fan J, Yang LL, et al. Use of 5-Fluorouracil Loaded Micelles and Cisplatin in Thermosensitive Chitosan Hydrogel as an Efficient Therapy against Colorectal Peritoneal Carcinomatosis. Macromol Biosci. 2017;17(4).

  137. Gong C, Wang C, Wang Y, Wu Q, Zhang D, Luo F, et al. Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites. Nanoscale. 2012;4(10):3095–104.

    CAS  PubMed  Google Scholar 

  138. Zhang W, Cui T, Liu L, Wu Q, Sun L, Li L, et al. Improving Anti-Tumor Activity of Curcumin by Polymeric Micelles in Thermosensitive Hydrogel System in Colorectal Peritoneal Carcinomatosis Model. J Biomed Nanotech. 2015;11(7):1173–82.

    CAS  Google Scholar 

  139. Sun B, Taha MS, Ramsey B, Torregrosa-Allen S, Elzey BD, Yeo Y. Intraperitoneal chemotherapy of ovarian cancer by hydrogel depot of paclitaxel nanocrystals. J Control Release. 2016;235:91–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Phillips WT, Medina LA, Klipper R, Goins B. A novel approach for the increased delivery of pharmaceutical agents to peritoneum and associated lymph nodes. J Pharmacol Exp Ther. 2002;303(1):11–6.

    CAS  PubMed  Google Scholar 

  141. Chang RS, Kim J, Lee HY, Han SE, Na J, Kim K, et al. Reduced dose-limiting toxicity of intraperitoneal mitoxantrone chemotherapy using cardiolipin-based anionic liposomes. Nanomedicine. 2010;6(6):769–76.

    CAS  PubMed  Google Scholar 

  142. Sadzuka Y, Nakai S, Miyagishima A, Nozawa Y, Hirota S. Effects of administered route on tissue distribution and antitumor activity of polyethyleneglycol-coated liposomes containing adriamycin. Cancer Lett. 1997;111(1-2):77–86.

    CAS  PubMed  Google Scholar 

  143. Sadzuka Y, Hirama R, Sonobe T. Effects of intraperitoneal administration of liposomes and methods of preparing liposomes for local therapy. Toxicol Lett. 2002;126(2):83–90.

    CAS  PubMed  Google Scholar 

  144. Comanescu MV, Mocanu MA, Anghelache L, Marinescu B, Dumitrache F, Badoi AD, et al. Toxicity of L-DOPA coated iron oxide nanoparticles in intraperitoneal delivery setting - preliminary preclinical study. Rom J Morphol Embryol. 2015;56(2 Suppl):691–6.

    PubMed  Google Scholar 

  145. Amoozgar Z, Wang L, Brandstoetter T, Wallis SS, Wilson EM, Goldberg MS. Dual-layer surface coating of PLGA-based nanoparticles provides slow-release drug delivery to achieve metronomic therapy in a paclitaxel-resistant murine ovarian cancer model. Biomacromolecules. 2014;15(11):4187–94.

    CAS  PubMed  Google Scholar 

  146. El-Dakdouki MH, Xia J, Zhu DC, Kavunja H, Grieshaber J, O'Reilly S, et al. Assessing the in vivo efficacy of doxorubicin loaded hyaluronan nanoparticles. ACS Appl Mater Interfaces. 2014;6(1):697–705.

    CAS  PubMed  Google Scholar 

  147. Deng Y, Yang F, Cocco E, Song E, Zhang J, Cui J, et al. Improved ip drug delivery with bioadhesive nanoparticles. Proc Natl Acad Sci USA. 2016;113(41):11453–8.

    CAS  PubMed  Google Scholar 

  148. Liu R, Colby AH, Gilmore D, Schulz M, Zeng J, Padera RF, et al. Nanoparticle tumor localization, disruption of autophagosomal trafficking, and prolonged drug delivery improve survival in peritoneal mesothelioma. Biomaterials. 2016;102:175–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Herrera VL, Colby AH, Tan GA, Moran AM, O'Brien MJ, Colson YL, et al. Evaluation of expansile nanoparticle tumor localization and efficacy in a cancer stem cell-derived model of pancreatic peritoneal carcinomatosis. Nanomedicine (Lond). 2016;11(9):1001–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Pan XQ, Lee RJ. In vivo antitumor activity of folate receptor-targeted liposomal daunorubicin in a murine leukemia model. Anticancer Res. 2005;25(1a):343–6.

    CAS  PubMed  Google Scholar 

  151. Chaudhury A, Das S, Bunte RM, Chiu GN. Potent therapeutic activity of folate receptor-targeted liposomal carboplatin in the localized treatment of intraperitoneally grown human ovarian tumor xenograft. Int J Nanomedicine. 2012;7:739–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Lehtinen J, Raki M, Bergstrom KA, Uutela P, Lehtinen K, Hiltunen A, et al. Pre-targeting and direct immunotargeting of liposomal drug carriers to ovarian carcinoma. PLoS One. 2012;7(7):e41410.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. McQuarrie S, Mercer J, Syme A, Suresh M, Miller G. Preliminary results of nanopharmaceuticals used in the radioimmunotherapy of ovarian cancer. J Pharm Pharm Sci. 2005;7(4):29–34.

    PubMed  Google Scholar 

  154. Akita N, Maruta F, Seymour LW, Kerr DJ, Parker AL, Asai T, et al. Identification of oligopeptides binding to peritoneal tumors of gastric cancer. Cancer Sci. 2006;97(10):1075–81.

    CAS  PubMed  Google Scholar 

  155. Di Pasqua AJ, Huckle JE, Kim JK, Chung Y, Wang AZ, Jay M, et al. Preparation of neutron-activatable holmium nanoparticles for the treatment of ovarian cancer metastases. Small. 2012;8(7):997–1000.

    PubMed  Google Scholar 

  156. Ndong C, Toraya-Brown S, Kekalo K, Baker I, Gerngross TU, Fiering SN, et al. Antibody-mediated targeting of iron oxide nanoparticles to the folate receptor alpha increases tumor cell association in vitro and in vivo. Int J Nanomedicine. 2015;10:2595–617.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Cirstoiu-Hapca A, Buchegger F, Lange N, Bossy L, Gurny R, Delie F. Benefit of anti-HER2-coated paclitaxel-loaded immuno-nanoparticles in the treatment of disseminated ovarian cancer: Therapeutic efficacy and biodistribution in mice. J Control Release. 2010;144(3):324–31.

    CAS  PubMed  Google Scholar 

  158. Gao N, Bozeman EN, Qian W, Wang L, Chen H, Lipowska M, et al. Tumor Penetrating Theranostic Nanoparticles for Enhancement of Targeted and Image-guided Drug Delivery into Peritoneal Tumors following Intraperitoneal Delivery. Theranostics. 2017;7(6):1689–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Glazer ES, Zhu C, Massey KL, Thompson CS, Kaluarachchi WD, Hamir AN, et al. Noninvasive radiofrequency field destruction of pancreatic adenocarcinoma xenografts treated with targeted gold nanoparticles. Clin Cancer Res. 2010;16(23):5712–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Wonder E, Simón-Gracia L, Scodeller P, Majzoub RN, Kotamraju VR, Ewert KK, et al. Competition of charge-mediated and specific binding by peptide-tagged cationic liposome–DNA nanoparticles in vitro and in vivo. Biomaterials. 2018;166:52–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Hunt H, Simon-Gracia L, Tobi A, Kotamraju VR, Sharma S, Nigul M, et al. Targeting of p32 in peritoneal carcinomatosis with intraperitoneal linTT1 peptide-guided pro-apoptotic nanoparticles. J Control Release. 2017;260:142–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Macura SL, Steinbacher JL, Macpherson MB, Lathrop MJ, Sayan M, Hillegass JM, et al. Microspheres targeted with a mesothelin antibody and loaded with doxorubicin reduce tumor volume of human mesotheliomas in xenografts. BMC Cancer. 2013;13:400.

    PubMed  PubMed Central  Google Scholar 

  163. Luo T, Sun J, Zhu S, He J, Hao L, Xiao L, et al. Ultrasound-mediated destruction of oxygen and paclitaxel loaded dual-targeting microbubbles for intraperitoneal treatment of ovarian cancer xenografts. Cancer Lett. 2017;391:1–11.

    CAS  PubMed  Google Scholar 

  164. Desale SS, Soni KS, Romanova S, Cohen SM, Bronich TK. Targeted delivery of platinum-taxane combination therapy in ovarian cancer. J Control Release. 2015;220(Pt B):651-659.

  165. Ikehara Y, Shiuchi N, Kabata-Ikehara S, Nakanishi H, Yokoyama N, Takagi H, et al. Effective induction of anti-tumor immune responses with oligomannose-coated liposome targeting to intraperitoneal phagocytic cells. Cancer Lett. 2008;260(1-2):137–45.

    CAS  PubMed  Google Scholar 

  166. Matsui M, Shimizu Y, Kodera Y, Kondo E, Ikehara Y, Nakanishi H. Targeted delivery of oligomannose-coated liposome to the omental micrometastasis by peritoneal macrophages from patients with gastric cancer. Cancer Sci. 2010;101(7):1670–7.

    CAS  PubMed  Google Scholar 

  167. Kuramoto Y, Kawakami S, Zhou S, Fukuda K, Yamashita F, Hashida M. Use of mannosylated cationic liposomes/ immunostimulatory CpG DNA complex for effective inhibition of peritoneal dissemination in mice. J Gene Med. 2008;10(4):392–9.

    CAS  PubMed  Google Scholar 

  168. Kono Y, Kawakami S, Higuchi Y, Maruyama K, Yamashita F, Hashida M. Antitumor effect of nuclear factor-kappaB decoy transfer by mannose-modified bubble lipoplex into macrophages in mouse malignant ascites. Cancer Sci. 2014;105(8):1049–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Ikemoto H, Lingasamy P, Anton Willmore AM, Hunt H, Kurm K, Tammik O, et al. Hyaluronan-binding peptide for targeting peritoneal carcinomatosis. Tumour Biol. 2017;39(5):1010428317701628.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments and Disclosures

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simin Dadashzadeh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, S., Haeri, A., Mahlooji, I. et al. Tuning the Physicochemical Characteristics of Particle-Based Carriers for Intraperitoneal Local Chemotherapy. Pharm Res 37, 119 (2020). https://doi.org/10.1007/s11095-020-02818-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02818-8

Key words

Navigation