Skip to main content

Advertisement

Log in

Probing the Molecular-Level Interactions in an Active Pharmaceutical Ingredient (API) - Polymer Dispersion and the Resulting Impact on Drug Product Formulation

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

An investigation of underlying mechanisms of API-polymer interaction patterns has the potential to provide valuable insights for selecting appropriate formulations with superior physical stability and processability.

Materials and Methods

In this study, copovidone was used as a polymeric carrier for several model compounds including clotrimazole, nifedipine, and posaconazole. The varied chemical structures conferred the ability for the model compounds to form distinct interactions with copovidone. Rheology and nuclear magnetic resonance (NMR) were combined to investigate the molecular pattern and relative strength of active pharmaceutical ingredient (API)-polymer interactions. In addition, the impact of the interactions on formulation processability via hot melt extrusion (HME) and physical stability were evaluated.

Results

The rheological response of an API-polymer system was found to be highly sensitive to API-polymer interaction, depending both on API chemistry and API-polymer miscibility. In the systems studied, dispersed API induced a stronger plasticizer effect on the polymer matrix compared to crystalline/aggregated API. Correspondingly, the processing torque via HME showed a proportional relationship with the maximum complex viscosity of the API-polymer system. In order to quantitatively evaluate the relative strength of the API-polymer interaction, homogeneously dispersed API-polymer amorphous samples were prepared by HME at an elevated temperature. DSC, XRD, and rheology were employed to confirm the amorphous integrity and homogeneity of the resultant extrudates. Subsequently, the homogeneously dispersed API-polymer amorphous dispersions were interrogated by rheology and NMR to provide a qualitative and quantitative assessment of the nature of the API-polymer interaction, both macroscopically and microscopically. Rheological master curves of frequency sweeps of the extrudates exhibited a strong dependence on the API chemistry and revealed a rank ordering of the relative strength of API-copovidone interactions, in the order of posaconazole > nifedipine > clotrimazole. NMR data provided the means to precisely map the API-polymer interaction pattern and identify the specific sites of interaction from a molecular perspective. Finally, the impact of API-polymer interactions on the physical stability of the resultant extrudates was studied.

Conclusion

Qualitative and quantitative evaluation of the relative strength of the API-polymer interaction was successfully accomplished by utilizing combined rheology and NMR.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Kumar Battu S, et al. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm. 2007;33:909–26.

    CAS  PubMed  Google Scholar 

  2. Repka MA, Battu SK, Upadhye SB, Thumma S, Crowley MM, Zhang F, et al. Pharmaceutical applications of hot-melt extrusion: part II. Drug Dev Ind Pharm. 2007;33:1043–57.

    CAS  PubMed  Google Scholar 

  3. Brown C, DiNunzio J, Eglesia M, Forster S, Lamm M, Lowinger M, et al. Hot-melt extrusion for solid dispersions: composition and design considerations. Amorphous solid dispersions: Springer; 2014. p. 197–230.

  4. Rumondor AC, Ivanisevic I, Bates S, Alonzo DE, Taylor LS. Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm Res. 2009;26:2523–34.

    CAS  PubMed  Google Scholar 

  5. Song Y, Yang X, Chen X, Nie H, Byrn S, Lubach JW. Investigation of drug–excipient interactions in Lapatinib amorphous solid dispersions using solid-state NMR spectroscopy. Mol Pharm. 2015;12:857–66.

    CAS  PubMed  Google Scholar 

  6. Marsac PJ, Li T, Taylor LS. Estimation of drug–polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res. 2009;26:139–51.

    CAS  PubMed  Google Scholar 

  7. Nie H, Mo H, Zhang M, Song Y, Fang K, Taylor LS, et al. Investigating the interaction pattern and structural elements of a drug–polymer complex at the molecular level. Mol Pharm. 2015;12:2459–68.

    CAS  PubMed  Google Scholar 

  8. Nie H, Su Y, Zhang M, Song Y, Leone A, Taylor LS, et al. Solid-state spectroscopic investigation of molecular interactions between Clofazimine and Hypromellose phthalate in amorphous solid dispersions. Mol Pharm. 2016;13:3964–75.

    CAS  PubMed  Google Scholar 

  9. Liu H, Zhang X, Suwardie H, Wang P, Gogos CG. Miscibility studies of indomethacin and Eudragit® E PO by thermal, rheological, and spectroscopic analysis. J Pharm Sci. 2012;101:2204–12.

    CAS  PubMed  Google Scholar 

  10. Yang M, Wang P, Suwardie H, Gogos C. Determination of acetaminophen's solubility in poly (ethylene oxide) by rheological, thermal and microscopic methods. Int J Pharm. 2011;403:83–9.

    CAS  PubMed  Google Scholar 

  11. Maniruzzaman M, Morgan DJ, Mendham AP, Pang J, Snowden MJ, Douroumis D. Drug–polymer intermolecular interactions in hot-melt extruded solid dispersions. Int J Pharm. 2013;443:199–208.

    CAS  PubMed  Google Scholar 

  12. Punčochová K, Heng JYY, Beránek J, Štěpánek F. Investigation of drug–polymer interaction in solid dispersions by vapour sorption methods. Int J Pharm. 2014;469:159–67.

    PubMed  Google Scholar 

  13. Sarode AL, Sandhu H, Shah N, Malick W, Zia H. Hot melt extrusion (HME) for amorphous solid dispersions: predictive tools for processing and impact of drug–polymer interactions on supersaturation. Eur J Pharm Sci. 2013;48:371–84.

    CAS  PubMed  Google Scholar 

  14. Huang J, Wigent RJ, Schwartz JB. Drug–polymer interaction and its significance on the physical stability of nifedipine amorphous dispersion in microparticles of an ammonio methacrylate copolymer and ethylcellulose binary blend. J Pharm Sci. 2008;97:251–62.

    CAS  PubMed  Google Scholar 

  15. Tian Y, Booth J, Meehan E, Jones DS, Li S, Andrews GP. Construction of drug–polymer thermodynamic phase diagrams using Flory–Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions. Mol Pharm. 2012;10:236–48.

    PubMed  Google Scholar 

  16. Jhaand PK, Larson RG. Assessing the efficiency of polymeric excipients by atomistic molecular dynamics simulations. Mol Pharm. 2014;11:1676–86.

    Google Scholar 

  17. Lu X, Huang C, Lowinger MB, Yang F, Xu W, Brown CD, et al. Molecular interactions in Posaconazole amorphous solid dispersions from two-dimensional solid-state NMR spectroscopy. Mol Pharm. 2019;16:2579–89.

    CAS  PubMed  Google Scholar 

  18. Meng F, Jing Z, Ferreira R, Ren P, Zhang F. Investigating the association mechanism between Rafoxanide and Povidone. Langmuir. 2018;34:13971–8.

    CAS  PubMed  Google Scholar 

  19. Overhoff KA, Moreno A, Miller DA, Johnston KP, Williams RO. Solid dispersions of itraconazole and enteric polymers made by ultra-rapid freezing. Int J Pharm. 2007;336:122–32.

    CAS  PubMed  Google Scholar 

  20. Bochmann ES, Neumann D, Gryczke A, Wagner KG. Micro-scale prediction method for API-solubility in polymeric matrices and process model for forming amorphous solid dispersion by hot-melt extrusion. Eur J Pharm Biopharm. 2016;107:40–8.

    CAS  PubMed  Google Scholar 

  21. Saerens L, Dierickx L, Quinten T, Adriaensens P, Carleer R, Vervaet C, et al. In-line NIR spectroscopy for the understanding of polymer–drug interaction during pharmaceutical hot-melt extrusion. Eur J Pharm Biopharm. 2012;81:230–7.

    CAS  PubMed  Google Scholar 

  22. Ewing AV, Clarke GS, Kazarian SG. Stability of indomethacin with relevance to the release from amorphous solid dispersions studied with ATR-FTIR spectroscopic imaging. Eur J Pharm Sci. 2014;60:64–71.

    CAS  PubMed  Google Scholar 

  23. Saerens L, Dierickx L, Lenain B, Vervaet C, Remon JP, De Beer T. Raman spectroscopy for the in-line polymer–drug quantification and solid state characterization during a pharmaceutical hot-melt extrusion process. Eur J Pharm Biopharm. 2011;77:158–63.

    CAS  PubMed  Google Scholar 

  24. Newman A, Engers D, Bates S, Ivanisevic I, Kelly RC, Zografi G. Characterization of amorphous API: polymer mixtures using X-ray powder diffraction. J Pharm Sci. 2008;97:4840–56.

    CAS  PubMed  Google Scholar 

  25. K. Kothari, V. Ragoonanan, and R. Suryanarayanan. The role of drug–polymer hydrogen bonding interactions on the molecular mobility and physical stability of nifedipine solid dispersions. (2014).

    Google Scholar 

  26. Meng F, Trivino A, Prasad D, Chauhan H. Investigation and correlation of drug polymer miscibility and molecular interactions by various approaches for the preparation of amorphous solid dispersions. Eur J Pharm Sci. 2015;71:12–24.

    CAS  PubMed  Google Scholar 

  27. Marsac PJ, Shamblin SL, Taylor LS. Theoretical and practical approaches for prediction of drug–polymer miscibility and solubility. Pharm Res. 2006;23:2417–26.

    CAS  PubMed  Google Scholar 

  28. Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer–surfactant combinations using solubility parameters and testing the processability. Int J Pharm. 2007;328:119–29.

    CAS  PubMed  Google Scholar 

  29. Chan S-Y, Qi S, Craig DQ. An investigation into the influence of drug–polymer interactions on the miscibility, processability and structure of polyvinylpyrrolidone-based hot melt extrusion formulations. Int J Pharm. 2015;496:95–106.

    CAS  PubMed  Google Scholar 

  30. Ivanisevic I, Bates S, Chen P. Novel methods for the assessment of miscibility of amorphous drug-polymer dispersions. J Pharm Sci. 2009;98:3373–86.

    CAS  PubMed  Google Scholar 

  31. Meng F, Dave V, Chauhan H. Qualitative and quantitative methods to determine miscibility in amorphous drug–polymer systems. Eur J Pharm Sci. 2015;77:106–11.

    CAS  PubMed  Google Scholar 

  32. Lamm MS, Simpson A, McNevin M, Frankenfeld C, Nay R, Variankaval N. Probing the effect of drug loading and humidity on the mechanical properties of solid dispersions with nanoindentation: antiplasticization of a polymer by a drug molecule. Mol Pharm. 2012;9:3396–402.

    CAS  PubMed  Google Scholar 

  33. Van Renterghem J, Vervaet C, De Beer T. Rheological characterization of molten polymer-drug dispersions as a predictive tool for pharmaceutical hot-melt extrusion processability. Pharmaceutical Research. 2017:1–10.

  34. Bochmann ES, Üstüner EE, Gryczke A, Wagner KG. Predicting melt rheology for hot-melt extrusion by means of a simple Tg-measurement. Eur J Pharm Biopharm. 2017;119:47–55.

    CAS  PubMed  Google Scholar 

  35. Aho J, Boetker JP, Baldursdottir S, Rantanen J. Rheology as a tool for evaluation of melt processability of innovative dosage forms. Int J Pharm. 2015;494:623–42.

    CAS  PubMed  Google Scholar 

  36. Yang F, Su Y, Zhu L, Brown CD, Rosen LA, Rosenberg KJ. Rheological and solid-state NMR assessments of copovidone/clotrimazole model solid dispersions. Int J Pharm. 2016;500:20–31.

    CAS  PubMed  Google Scholar 

  37. Yang F, Su Y, Zhang J, DiNunzio J, Leone A, Huang C, et al. Rheology guided rational selection of processing temperature to prepare Copovidone–Nifedipine amorphous solid dispersions via hot melt extrusion (HME). Mol Pharm. 2016;13:3494–505.

    CAS  PubMed  Google Scholar 

  38. Gupta SS, Parikh T, Meena AK, Mahajan N, Vitez I, Serajuddin AT. Effect of carbamazepine on viscoelastic properties and hot melt extrudability of Soluplus®. Int J Pharm. 2015;478:232–9.

    CAS  PubMed  Google Scholar 

  39. Zecevicand DE, Wagner KG. Rational development of solid dispersions via hot-melt extrusion using screening, material characterization, and numeric simulation tools. J Pharm Sci. 2013;102:2297–310.

    Google Scholar 

  40. Suwardie H, Wang P, Todd DB, Panchal V, Yang M, Gogos CG. Rheological study of the mixture of acetaminophen and polyethylene oxide for hot-melt extrusion application. Eur J Pharm Biopharm. 2011;78:506–12.

    CAS  PubMed  Google Scholar 

  41. Bhardwaj SP, Arora KK, Kwong E, Templeton A, Clas S-D, Suryanarayanan R. Mechanism of amorphous itraconazole stabilization in polymer solid dispersions: role of molecular mobility. Mol Pharm. 2014;11:4228–37.

    CAS  PubMed  Google Scholar 

  42. Leonardi F, Derail C, Marin G. Some applications of molecular rheology: polymer formulation and molecular design. J Non-Newtonian Fluid Mech. 2005;128:50–61.

    CAS  Google Scholar 

  43. Janeschitz-Kriegl H. Polymer melt rheology and flow birefringence: Springer Science & Business Media; 2012.

  44. Paudel A, Geppi M, Van den Mooter G. Structural and dynamic properties of amorphous solid dispersions: the role of solid-state nuclear magnetic resonance spectroscopy and relaxometry. J Pharm Sci. 2014;103:2635–62.

    CAS  PubMed  Google Scholar 

  45. Berendt RT, Sperger DM, Munson EJ, Isbester PK. Solid-state NMR spectroscopy in pharmaceutical research and analysis. TrAC Trends Anal Chem. 2006;25:977–84.

    CAS  Google Scholar 

  46. Urbanova M, Brus J, Sedenkova I, Policianova O, Kobera L. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19 F MAS NMR and factor analysis. Spectrochim Acta A Mol Biomol Spectrosc. 2013;100:59–66.

    CAS  PubMed  Google Scholar 

  47. Rossini AJ, Widdifield CM, Zagdoun A, Lelli M, Schwarzwälder M, Copéret C, et al. Dynamic nuclear polarization enhanced NMR spectroscopy for pharmaceutical formulations. J Am Chem Soc. 2014;136:2324–34.

    CAS  PubMed  Google Scholar 

  48. Tatton AS, Pham TN, Vogt FG, Iuga D, Edwards AJ, Brown SP. Probing hydrogen bonding in cocrystals and amorphous dispersions using 14N–1H HMQC solid-state NMR. Mol Pharm. 2013;10:999–1007.

    CAS  PubMed  Google Scholar 

  49. Školáková T, Souchová L, Patera J, Pultar M, Školáková A, Zámostný P. Prediction of drug-polymer interactions in binary mixtures using energy balance supported by inverse gas chromatography. Eur J Pharm Sci. 2019;130:247–59.

    PubMed  Google Scholar 

  50. Adrjanowicz K, Kaminski K, Wlodarczyk P, Grzybowska K, Tarnacka M, Zakowiecki D, et al. Molecular dynamics of the supercooled pharmaceutical agent posaconazole studied via differential scanning calorimetry and dielectric and mechanical spectroscopies. Mol Pharm. 2013;10:3934–45.

    CAS  PubMed  Google Scholar 

  51. Tsakiridou G, Reppas C, Kuentz M, Kalantzi L. A novel rheological method to assess drug-polymer interactions regarding miscibility and crystallization of drug in amorphous solid dispersions for oral drug delivery. Pharmaceutics. 2019;11:625.

    CAS  PubMed Central  Google Scholar 

  52. Van Gurp M, Palmen J. Time-temperature superposition for polymeric blends. Rheol Bull. 1998;67:5–8.

    Google Scholar 

  53. Juster H, Distlbacher T, Steinbichler G. Viscosity analysis of a polymer-based drug delivery system using open-source CFD methods and high-pressure capillary Rheometry. Int Polym Process. 2014;29:570–8.

    CAS  Google Scholar 

  54. Graessley WW. The entanglement concept in polymer rheology. The entanglement concept in polymer rheology: Springer; 1974. p. 1–179.

  55. Liu H, Wang P, Zhang X, Shen F, Gogos CG. Effects of extrusion process parameters on the dissolution behavior of indomethacin in Eudragit® E PO solid dispersions. Int J Pharm. 2010;383:161–9.

    CAS  PubMed  Google Scholar 

  56. Treffer D, Troiss A, Khinast J. A novel tool to standardize rheology testing of molten polymers for pharmaceutical applications. Int J Pharm. 2015;495:474–81.

    CAS  PubMed  Google Scholar 

  57. Balogh A, Drávavölgyi G, Faragó K, Farkas A, Vigh T, Sóti PL, et al. Plasticized drug-loaded melt electrospun polymer mats: characterization, thermal degradation, and release kinetics. J Pharm Sci. 2014;103:1278–87.

    CAS  PubMed  Google Scholar 

  58. Prudic A, Ji Y, Sadowski G. Thermodynamic phase behavior of API/polymer solid dispersions. Mol Pharm. 2014;11:2294–304.

    CAS  PubMed  Google Scholar 

  59. Qian F, Huang J, Hussain MA. Drug–polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci. 2010;99:2941–7.

    CAS  PubMed  Google Scholar 

  60. Patil H, Tiwari RV, Repka MA. Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech. 2016;17:20–42.

    CAS  PubMed  Google Scholar 

  61. Teja SB, Patil SP, Shete G, Patel S, Bansal AK. Drug-excipient behavior in polymeric amorphous solid dispersions. J Excip Food Chem. 2016;4.

  62. Songand H, Shin H-S. The antifungal drug clotrimazole. Acta Crystallogr Sect C: Cryst Struct Commun. 1998;54:1675–7.

    Google Scholar 

  63. Ehmann HM, Zimmer A, Roblegg E, Werzer O. Morphologies in solvent-annealed clotrimazole thin films explained by Hansen-solubility parameters. Cryst Growth Des. 2014;14:1386–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 2012;47:139–51.

    CAS  PubMed  Google Scholar 

  65. Gunn E, Guzei IA, Cai T, Yu L. Polymorphism of nifedipine: crystal structure and reversible transition of the metastable β polymorph. Cryst Growth Des. 2012;12:2037–43.

    CAS  Google Scholar 

  66. Hirayama F, Wang Z, Uekama K. Effect of 2-hydroxypropyl-β-cyclodextrin on crystallization and polymorphic transition of nifedipine in solid state. Pharm Res. 1994;11:1766–70.

    CAS  PubMed  Google Scholar 

  67. Grooff D, Liebenberg W, De Villiers MM. Preparation and transformation of true nifedipine polymorphs: investigated with differential scanning calorimetry and X-ray diffraction pattern fitting methods. J Pharm Sci. 2011;100:1944–57.

    CAS  PubMed  Google Scholar 

  68. Grooff D, De Villiers M, Liebenberg W. Thermal methods for evaluating polymorphic transitions in nifedipine. Thermochim Acta. 2007;454:33–42.

    CAS  Google Scholar 

  69. Tang P, Ma X, Wu D, Li S, Xu K, Tang B, et al. Posaconazole/hydroxypropyl-β-cyclodextrin host–guest system: improving dissolution while maintaining antifungal activity. Carbohydr Polym. 2016;142:16–23.

    CAS  PubMed  Google Scholar 

  70. Fuleand R, Amin P. Hot melt extruded amorphous solid dispersion of posaconazole with improved bioavailability: investigating drug-polymer miscibility with advanced characterisation. Biomed Res Int. 2014;2014.

  71. Qian F, Huang J, Zhu Q, Haddadin R, Gawel J, Garmise R, et al. Is a distinctive single T g a reliable indicator for the homogeneity of amorphous solid dispersion? Int J Pharm. 2010;395:232–5.

    CAS  PubMed  Google Scholar 

  72. Baird JA, Van Eerdenbrugh B, Taylor LS. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci. 2010;99:3787–806.

    CAS  PubMed  Google Scholar 

  73. Ferry JD. Viscoelastic properties of polymers: John Wiley & Sons; 1980.

  74. Crossley RJ, Schubel PJ, De Focatiis DSA. Time–temperature equivalence in the tack and dynamic stiffness of polymer prepreg and its application to automated composites manufacturing. Compos A: Appl Sci Manuf. 2013;52:126–33.

    CAS  Google Scholar 

  75. Van Krevelen DW, Te Nijenhuis K. Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions: Elsevier; 2009.

  76. Cai H, Ait-Kadi A, Brisson J. Dynamic rheological analysis of a miscible blend showing strong interactions. Polymer. 2003;44:1481–9.

    CAS  Google Scholar 

  77. Sopade P, Halley P, Bhandari B, D’arcy B, Doebler C, Caffin N. Application of the Williams–Landel–Ferry model to the viscosity–temperature relationship of Australian honeys. J Food Eng. 2003;56:67–75.

    Google Scholar 

  78. Lomellini P. Williams-Landel-Ferry versus Arrhenius behaviour: polystyrene melt viscoelasticity revised. Polymer. 1992;33:4983–9.

    CAS  Google Scholar 

  79. Angell C. Why C 1= 16–17 in the WLF equation is physical—and the fragility of polymers. Polymer. 1997;38:6261–6.

    CAS  Google Scholar 

  80. Jacksonand W, Caldwell J. Antiplasticization. II Characteristics of antiplasticizers. J Appl Polym Sci. 1967;11:211–26.

    Google Scholar 

  81. Ahoand J, Syrjälä S. On the measurement and modeling of viscosity of polymers at low temperatures. Polym Test. 2008;27:35–40.

    Google Scholar 

  82. Kothari K, Ragoonanan V, Suryanarayanan R. The role of drug–polymer hydrogen bonding interactions on the molecular mobility and physical stability of Nifedipine solid dispersions. Mol Pharm. 2015;12:162–70.

    CAS  PubMed  Google Scholar 

  83. Marsac PJ, Rumondor AC, Nivens DE, Kestur US, Stanciu L, Taylor LS. Effect of temperature and moisture on the miscibility of amorphous dispersions of felodipine and poly (vinyl pyrrolidone). J Pharm Sci. 2010;99:169–85.

    CAS  PubMed  Google Scholar 

  84. Hilton BD, Feng W, Martin GE. Assignment of the 15N resonances of the antifungal agent posaconazole. J Heterocyclic Chem. 2011;48:948–51.

    CAS  Google Scholar 

  85. Hiltonand BD, Martin GE. The impact of long-range 1H-15N Heteronuclear shift correlation data on computer-assisted structure elucidation: posaconazole. J Heterocyclic Chem. 2012;49:526–32.

    Google Scholar 

  86. Martin GE. Posaconazole: application of HSQC-ADEQUATE from general indirect covariance processing. J Heterocyclic Chem. 2012;49:716–20.

    CAS  Google Scholar 

  87. Mistry P, Mohapatra S, Gopinath T, Vogt FG, Suryanarayanan R. Role of the strength of drug–polymer interactions on the molecular mobility and crystallization inhibition in ketoconazole solid dispersions. Mol Pharm. 2015;12:3339–50.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors are grateful to MRL for the grant and support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyuan Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 322 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Su, Y., Small, J. et al. Probing the Molecular-Level Interactions in an Active Pharmaceutical Ingredient (API) - Polymer Dispersion and the Resulting Impact on Drug Product Formulation. Pharm Res 37, 94 (2020). https://doi.org/10.1007/s11095-020-02813-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02813-z

KEY WORDS

Navigation