Skip to main content
Log in

The Effect of Anesthetic Regimens on Intestinal Absorption of Passively Absorbed Drugs in Rats

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Different anesthetic regimens are used during single pass intestinal perfusion (SPIP) experiments for the study of intestinal drug absorption in rats. We examined the ketamine/xylazine anesthetic combination to evaluate its influence on drug absorption compared to older regimens. Additionally, we examined whether supplementary analgesia has any effect on drug absorption and the effect of the different anesthetic regimens on induction time and stress response.

Methods

Rats were anesthetized using four different anesthetic regimens; ketamine/midazolam, pentobarbital, ketamine/xylazine and ketamine/xylazine/butorphanol. Three model drugs were administered to rat intestines and Peff was calculated. Stress response was evaluated by quantifying blood corticosterone levels and induction time was recorded.

Results

We found absorption under pentobarbital to be higher or similar to absorption under ketamine/midazolam. These results partly correlate with past literature data. Ketamine/xylazine was found to give similar or higher Peff compared to pentobarbital and ketamine/midazolam. Addition of butorphanol did not affect absorption and reduced induction time and stress.

Conclusions

In studies of intestinal drug absorption, the ketamine/xylazine combination is superior to other anesthetic regimens as it is more convenient and seems to affect absorption to a lesser extent. Addition of butorphanol is highly recommended as it did not affect absorption but led to a more effective and less stress inducing experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CV:

Coefficient of variation

ESI:

Electrospray ionization

K/M:

Ketamine/midazolam

K/X:

Ketamine/xylazine

K/X/B:

Ketamine/xylazine/butorphanol

P:

Pentobarbital

Peff :

Effective permeability

SD:

Standard deviation

SEM:

Standard error of the mean

SPIP:

Single Pass Intestinal Perfusion

UPLC-MS:

Ultra performance liquid chromatography - mass spectrometry

References

  1. Stappaerts J, Brouwers J, Annaert P, Augustijns P. In Situ Perfusion in Rodents to Explore Intestinal Drug Absorption: Challenges and Opportunities. Int J Pharm. 2015;478:665–81.

    Article  CAS  Google Scholar 

  2. Chiou WL, Barve A. Linear Correlation of the Fraction of Oral Dose Absorbed of 64 Drugs between Humans and Rats. Pharm Res. 1998;15:1792–5.

    Article  CAS  Google Scholar 

  3. Zhao YH, Abraham MH, Le J, Hersey A, Luscombe CN, Beck G, et al. Evaluation of Rat Intestinal Absorption Data and Correlation with Human Intestinal Absorption. Eur J Med Chem. 2003;38:233–43.

    Article  CAS  Google Scholar 

  4. Yuasa H, Matsuda K, Watanabe J. Influence of Anesthetic Regimens on Intestinal Absorption in Rats. Pharm Res. 1993;10:884–8.

    Article  CAS  Google Scholar 

  5. Fagerholm U, Johansson M, Lennernäs H. Comparison between Permeability Coefficients in Rat and Human Jejunum. Pharm Res. 1996;13(9):1336–42.

    Article  CAS  Google Scholar 

  6. Uhing MR, Kimura RE. Active Transport of 3-O-Methyl-Glucose by the Small Intestine in Chronically Catheterized Rats. J Clin Invest. 1995;95:2799–805.

    Article  CAS  Google Scholar 

  7. Cao X, Gibbs ST, Fang L, Miller HA, Landowski CP, Shin HC, et al. Why Is it Challenging to Predict Intestinal Drug Absorption and Oral Bioavailability in Human Using Rat Model. Pharm Res. 2006;23(8):1675–86.

    Article  CAS  Google Scholar 

  8. Sun J, Bao H, Peng Y, Zhang H, Sun Y, Qi J, et al. Improvement of Intestinal Transport, Absorption and Anti-Diabetic Efficacy of Berberine by Using GELUCIRE 44/14: In Vitro, in Situ and in Vivo Studies. Int J Pharm. 2018;544:46–54.

    Article  CAS  Google Scholar 

  9. Ruiz-Picazo A, Lozoya-Agullo I, Ortiz-Azcarate M, Merino-Sanjuán M, González-Álvarez M, González-Álvarez I, et al. Comparison of Segmental-Dependent Permeability in Human and In Situ Perfusion Model in Rat. Eur J Pharm Sci. 2017;107:191–6.

    Article  Google Scholar 

  10. Richardson CA, Flecknell PA. Anaesthesia and Post-Operative Analgesia Following Experimental Surgery in Laboratory Rodents: Are we Making Progress? Altern Lab Anim. 2005;33(2):119–27.

    Article  CAS  Google Scholar 

  11. Wixson SK, White WJ, Hughes HC Jr, Lang CM, Marshall WK. A Comparison of Pentobarbital, Fentanyl-Droperidol, Ketamine-Xylazine and Ketamine-Diazepam Anesthesia on Adult Male Rats. Lab Anim Sci. 1987;37(6):726–30.

    CAS  PubMed  Google Scholar 

  12. Harloff-Helleberg S, Nielsen LH, Nielsen HM. Animal Models for Evaluation of Oral Delivery of Biopharmaceuticals. J Control Release. 2017;268:57–71.

    Article  CAS  Google Scholar 

  13. Zur M, Gasparini M, Wolk O, Amidon GL, Dahan A. The Low/High BCS Permeability Class Boundary: Physicochemical Comparison of Metoprolol and Labetalol. Mol Pharm. 2014;11:1707–14.

    Article  CAS  Google Scholar 

  14. Lennernäs H, Palm K, Fagerholm U, Artursson P. Comparison between Permeability Coefficients in Rat and Human Jejunum. Int J Pharm. 1996;127:103–7.

    Article  Google Scholar 

  15. National Research Council (US) Committee on Recognition and Alleviation of Pain in Laboratory Animals. Recognition and Alleviation of Pain in Laboratory Animals. Washington (DC): National Academies Press (US); 2009

  16. Flecknell PA and Thomas AA. Comparative Anesthesia and Analgesia of Laboratory Animals. Grimm KA, Lamont LA, Tranquilli WJ, Greene SA, Robertson SA Editors in Veterinary Anesthesia and Analgesia: The Fifth Edition of Lumb and Jones; John Wiley & Sons. 2015. p 754–763

  17. Waynforth HB, Flecknell PA. Experimental and Surgical Technique in the Rat. 2nd ed. London: Academic Press; 1992.

    Google Scholar 

  18. Bennett BT, Brown MJ and Schofield JC. Chapter 4, Principles of Anesthesia and Analgesia by M. J. Brown. Essentials for Animal Research: A Primer for Research Personnel 2nd Ed. 1994 the University of Illinois at Chicago

  19. Huan L, Xiao L, Yanhong P, Li W, Qi-Gang Z, Bao-Chang C. Rapid Determination of Corticosterone in Mouse Plasma by Ultra-Fast Liquid Chromatography-Tandem Mass Spectrometry. Biomed Chromatogr. 2014;28:1860–3.

    Article  Google Scholar 

  20. Yap BW, Sim CH. Comparison of Various Types of Normality Tests. J Stat Comput Simul. 2011:2141–55.

  21. Sheskin D. Handbook of Parametric and Nonparametric Statistical Procedures – 2nd Ed. 2000. Chapman & Hall/CRC, Boca Raton

  22. R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2019. https://www.R-project.org/

    Google Scholar 

  23. Wickham H. The Split-Apply-Combine Strategy for Data Analysis. J Stat Softw. 2011;40(1):1–29 http://www.jstatsoft.org/v40/i01/.

    Article  Google Scholar 

  24. Pohlert T (2014). The Pairwise Multiple Comparison of Mean Ranks Package (PMCMR). R Package, https://CRAN.R-project.org/package=PMCMR

  25. Sutton SC, Rinaldi MTS. Comparison of the Gravimetric, Phenol Red, and 14C-PEG-3350 Methods to Determine Water Absorption in the Rat Single-Pass Intestinal Perfusion Model. AAPS PharmSci. 2001;3(3):1–5.

    Article  Google Scholar 

  26. Parr A, Hidalgo IJ, Bode C, Brown W, Yazdznian M, Gonzalez MA, et al. The Effect of Excipients on the Permeability of BCS Class III Compounds and Implications for Biowaivers. Pharm Res. 2016;33:167–76.

    Article  CAS  Google Scholar 

  27. Dahlgren D, Roos C, Peters K, Lundqvist A, Tannergren C, Sjögren E, et al. Evaluation of Drug Permeability Calculation Based on Luminal Disappearanceand Plasma Appearance in the Rat Single-Pass Intestinal Perfusion Model. Eur J Pharm Biopharm. 2019;142:31–7.

    Article  CAS  Google Scholar 

  28. Wahajuddin M, Singh SP, Raju KSR, Nafis A, Jain GK. Simultaneous Determination of Nine Model Compounds in Permeability Samples Using RP-HPLC: Application to Prove the Cassette Administration Principle in Single Pass Intestinal Perfusion in Rats. J Pharm Biomed Anal. 2012;67–68:71–6.

    Article  Google Scholar 

  29. Dixit P, Jain DK, Rajpoot JS. Differential Effect of Oxidative Stress on Intestinal Apparent Permeability of Drugs Transported by Paracellular and Transcellular Route. Eur J Drug Metab Pharmacokinet. 2012;37:203.

    Article  CAS  Google Scholar 

  30. Lignet F, Sherbetjian E, Kratochwil N, Russell JC, Suenderhauf MB, Otteneder TS. Characterization of Pharmacokinetics in the Göttingen Minipig with Reference Human Drugs: An In Vitro and In Vivo Approach. Pharm Res. 2016;33:2565–79.

  31. Uhing MR, Kimura RE. The Effect of Surgical Bowel Manipulation and Anesthesia on Intestinal Glucose Absorption in Rats. J Clin Invest. 1995;95:2790–8.

    Article  CAS  Google Scholar 

  32. Sugano K. Estimation of Effective Intestinal Membrane Permeability Considering Bile Micelle Solubilisation. Int J Pharm. 2009;368:116–22.

    Article  CAS  Google Scholar 

  33. Aydin C, Bagcivan I, Gursoy S, Altun A, Topcu O, Koyuncu A. Altered Spontaneous Contractions of the Ileum by Anesthetic Agents in Rats Exposed to Peritonitis. World J Gastroenterol. 2009;15(13):1620–4.

    Article  CAS  Google Scholar 

  34. Takefumi I, Takashi A, Makiko Y, Koh S. Propofol and Midazolam Inhibit Gastric Emptying and Gastrointestinal Transit in Mice. Anesth Analg. 2004;99(4):1102–6.

    Article  Google Scholar 

  35. Koga K, Ishitobia Y, Kawashimaa S, Taniguchib M, Murakami M. Membrane Permeability and Antipyrine Absorption in a Rat Model of Ischemic Colitis. Int J Pharm. 2004;286:41–52.

    Article  CAS  Google Scholar 

  36. Takahashi H, Nishikawa M, Hayashi M, Awazu S. The Use of a Perfluorochemical Emulsion as a Vascular Perfusate in Drug Absorption. J Pharm Pharmacol. 1988;40:252–7.

    Article  CAS  Google Scholar 

  37. Takahashi M, Washio T, Suzuki N, Igeta K, Yamashita S. Investigation of the Intestinal Permeability and First-Pass Metabolism of Drugs in Cynomolgus Monkeys Using Single-Pass Intestinal Perfusion. Biol Pharm Bull. 2010;33(1):111–6.

    Article  CAS  Google Scholar 

  38. Larhed AW, Artursson P, Gråsjö J, Björk E. Diffusion of Drugs in Native and Purified Gastrointestinal Mucus. J Pharm Sci. 1997;86(6):660–5.

    Article  CAS  Google Scholar 

  39. Gumbleton M, Nicholls PJ, Taylor G. Differential Influence of Laboratory Anaesthetic Regimens upon Renal and Hepatosplanchnic Haemodynamics in the Rat. Pharm Pharmacol. 1990;42:693–7.

    Article  CAS  Google Scholar 

  40. Dahan A, Mendelman A, Amsili S, Ezov N, Hoffman A. The Effect of General Anesthesia on the Intestinal Lymphatic Transport of Lipophilic Drugs: Comparison between Anesthetized and Freely Moving Conscious Rat Models. Eur J Pharm Sci. 2007;32(4–5):367–74.

    Article  CAS  Google Scholar 

  41. Stokes EL, Flecknell PA, Richardson CA. Reported Analgesic and Anaesthetic Administration to Rodents Undergoing Experimental Surgical Procedures. Lab Anim. 2009;43:149–54.

    Article  CAS  Google Scholar 

  42. Flecknell P. Rodent Analgesia: Assessment and Therapeutics. Vet J. 2018;232:70–7.

    Article  Google Scholar 

  43. Fenwick N, Duffus SEG, Griffin G. Pain Management for Animals Used in Science: Views of Scientists and Veterinarians in Canada. Animals. 2014;4(3):494–514.

    Article  Google Scholar 

  44. Kim JS, Mitchell S, Kijek P, Tsume Y, Hilfinger J, Amidon GL. The Suitability of an In Situ Perfusion Model for Permeability Determination: Utility for BCS Class I Biowaiver Requests. Mol Pharm. 2006;3(6):686–94.

    Article  CAS  Google Scholar 

  45. Stockham MA. Changes of Plasma and Adrenal Corticosterone Levels in the Rat after Repeated Stimuli. J Physiol. 1964;173(1):149–59.

    Article  CAS  Google Scholar 

  46. Gades NM, Danneman PJ, Wixson SK, Tolley EA. The Magnitude and Duration of the Analgesic Effect of Morphine, Butorphanol, and Buprenorphine in Rats and Mice. Contemp Top Lab Anim Sci. 2000;39(2):8–13.

    CAS  PubMed  Google Scholar 

  47. Tsukada F, Ohushi Y, Terunuma T, Sugawara M, Kohno H, Ohkubo Y. Activation of m-Opioid Pathway Is Associated with the Canceling Effect of Footshock Stimulus on the Restraint Stress-Induced Inhibition of Small Intestinal Motility in Rats. Biol Pharm Bull. 2001;24(11):1332–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sigal Saphier or Shahaf Katalan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saphier, S., Yacov, G., Wenger, A. et al. The Effect of Anesthetic Regimens on Intestinal Absorption of Passively Absorbed Drugs in Rats. Pharm Res 37, 87 (2020). https://doi.org/10.1007/s11095-020-02809-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02809-9

Key words

Navigation