Skip to main content

Advertisement

Log in

Metformin Disrupts Bile Acid Efflux by Repressing Bile Salt Export Pump Expression

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The bile salt export pump (BSEP), a key player in hepatic bile acid clearance, has been the center of research on drug-induced cholestasis. However, such studies focus primarily on the direct inhibition of BSEP, often overlooking the potential impact of transcriptional repression. This work aims to explore the disruption of bile acid efflux caused by drug-induced BSEP repression.

Methods

BSEP activity was analyzed in human primary hepatocytes (HPH) using a traditional biliary-clearance experiment and a modified efflux assay, which includes a 72-h pretreatment prior to efflux measurement. Relative mRNA and protein expressions were examined by RT-PCR and Western blotting, respectively.

Results

Metformin concentration-dependently repressed BSEP expression in HPH. Although metformin did not directly inhibit BSEP activity, longer metformin exposure reduced BSEP transport function in HPH by down-regulating BSEP expression. BSEP repression by metformin was found to be AMP-activated protein kinase-independent. Additional screening of 10 reported cholestatic non-BSEP inhibitors revealed that the anti-cancer drug tamoxifen also markedly repressed BSEP expression and reduced BSEP activity in HPH.

Conclusions

Repression of BSEP alone is sufficient to disrupt hepatic bile acid efflux. Metformin and tamoxifen appear to be prototypes of a class of BSEP repressors that may cause drug-induced cholestasis through gene repression instead of direct BSEP inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMPK :

AMP-activated protein kinase

BEI :

Biliary excretion index.

BSEP :

Bile salt export pump.

DILI :

Drug-induced liver injury.

DIC :

Drug-induced cholestasis.

HPH :

Human primary hepatocytes.

MRP :

Multidrug resistance-associated protein.

OST :

Organic solute transporter.

P-gp :

P-glycoprotein.

References

  1. Oorts M, Baze A, Bachellier P, Heyd B, Zacharias T, Annaert P, Richert L. Drug-induced cholestasis risk assessment in sandwich-cultured human hepatocytes. Toxicol In Vitro. 2016.

  2. Vatakuti S, Pennings JL, Gore E, Olinga P, Groothuis GM. Classification of Cholestatic and necrotic Hepatotoxicants using Transcriptomics on human precision-cut liver slices. Chem Res Toxicol. 2016;29(3):342–51.

    Article  CAS  PubMed  Google Scholar 

  3. Schadt HS, Wolf A, Pognan F, Chibout SD, Merz M, Kullak-Ublick GA. Bile acids in drug induced liver injury: key players and surrogate markers. Clin Res Hepatol Gastroenterol 2016.

  4. Noor F. A shift in paradigm towards human biology-based systems for cholestatic-liver diseases. J Physiol. 2015;593(23):5043–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qiu X, Zhang Y, Liu T, Shen H, Xiao Y, Bourner MJ, et al. Disruption of BSEP function in HepaRG cells alters bile acid disposition and is a susceptive factor to drug-induced Cholestatic injury. Mol Pharm. 2016;13(4):1206–16.

    Article  CAS  PubMed  Google Scholar 

  6. Chatterjee S, Richert L, Augustijns P, Annaert P. Hepatocyte-based in vitro model for assessment of drug-induced cholestasis. Toxicol Appl Pharmacol. 2014;274(1):124–36.

    Article  CAS  PubMed  Google Scholar 

  7. Namas R, Marquardt A. Case report and literature review: Quinacrine-induced Cholestatic hepatitis in undifferentiated connective tissue disease. J Rheumatol. 2015;42(7):1354–5.

    Article  CAS  PubMed  Google Scholar 

  8. Saadi T, Waterman M, Yassin H, Baruch Y. Metformin-induced mixed hepatocellular and cholestatic hepatic injury: case report and literature review. Int J Gen Med. 2013;6:703–6.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kotsampasakou E, Ecker GF. Predicting drug-induced cholestasis with the help of hepatic transporters-an in Silico modeling approach. J Chem Inf Model. 2017;57(3):608–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Parmentier C, Couttet P, Wolf A, Zaccharias T, Heyd B, Bachellier P, Uteng M, Richert L. Evaluation of transcriptomic signature as a valuable tool to study drug-induced cholestasis in primary human hepatocytes. Arch Toxicol. 2017.

  11. Gerloff T, Stieger B, Hagenbuch B, Madon J, Landmann L, Roth J, et al. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem. 1998;273(16):10046–50.

    Article  CAS  PubMed  Google Scholar 

  12. Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, et al. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet. 1998;20(3):233–8.

    Article  CAS  PubMed  Google Scholar 

  13. Marroquin LD, Bonin PD, Keefer J, Schroeter T. Assessment of Bile Salt Export Pump (BSEP) Inhibition in Membrane Vesicles Using Radioactive and LC/MS-Based Detection Methods. Curr Protoc Toxicol. 2017;71:14 14 11–14 14 20.

  14. Montanari F, Pinto M, Khunweeraphong N, Wlcek K, Sohail MI, Noeske T, et al. Flagging drugs that inhibit the bile Salt export pump. Mol Pharm. 2016;13(1):163–71.

    Article  CAS  PubMed  Google Scholar 

  15. Giacomini KM, Huang SM. Transporters in drug development and clinical pharmacology. Clin Pharmacol Ther. 2013;94(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  16. Tweedie D, Polli JW, Berglund EG, Huang SM, Zhang L, Poirier A, et al. Transporter studies in drug development: experience to date and follow-up on decision trees from the international transporter consortium. Clin Pharmacol Ther. 2013;94(1):113–25.

    Article  CAS  PubMed  Google Scholar 

  17. FDA. Drug Interaction Studies- study design, data analysis, implications for dosing, and labeling recommendations. In: Clinical Pharmacology CfDEaR, FDA, U.S. Department of Health and Human Services, editor.; 2012.

  18. Kock K, Ferslew BC, Netterberg I, Yang K, Urban TJ, Swaan PW, et al. Risk factors for development of cholestatic drug-induced liver injury: inhibition of hepatic basolateral bile acid transporters multidrug resistance-associated proteins 3 and 4. Drug Metab Dispos. 2014;42(4):665–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zollner G, Thueringer A, Lackner C, Fickert P, Trauner M. Alterations of canalicular ATP-binding cassette transporter expression in drug-induced liver injury. Digestion. 2014;90(2):81–8.

    Article  CAS  PubMed  Google Scholar 

  20. Garzel B, Yang H, Zhang L, Huang SM, Polli JE, Wang H. The role of bile salt export pump gene repression in drug-induced cholestatic liver toxicity. Drug Metab Dispos. 2014;42(3):318–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Desilets DJ, Shorr AF, Moran KA, Holtzmuller KC. Cholestatic jaundice associated with the use of metformin. Am J Gastroenterol. 2001;96(7):2257–8.

    Article  CAS  PubMed  Google Scholar 

  22. Nammour FE, Fayad NF, Peikin SR. Metformin-induced cholestatic hepatitis. Endocr Pract. 2003;9(4):307–9.

    Article  PubMed  Google Scholar 

  23. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Faucette SR, Sueyoshi T, Smith CM, Negishi M, Lecluyse EL, Wang H. Differential regulation of hepatic CYP2B6 and CYP3A4 genes by constitutive androstane receptor but not pregnane X receptor. J Pharmacol Exp Ther. 2006;317(3):1200–9.

    Article  CAS  PubMed  Google Scholar 

  25. Li L, Chen T, Stanton JD, Sueyoshi T, Negishi M, Wang H. The peripheral benzodiazepine receptor ligand 1-(2-Chlorophenyl-methylpropyl)-3-isoquinoline-carboxamide is a novel antagonist of human constitutive Androstane receptor. Mol Pharmacol. 2008;74(2):443–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Swift B, Pfeifer ND, Brouwer KLR. Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev. 2010;42(3):446–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nygaard EB, Vienberg SG, Orskov C, Hansen HS, Andersen B. Metformin stimulates FGF21 expression in primary hepatocytes. Exp Diabetes Res. 2012;2012:465282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wanninger J, Neumeier M, Weigert J, Liebisch G, Weiss TS, Schaffler A, et al. Metformin reduces cellular lysophosphatidylcholine and thereby may lower apolipoprotein B secretion in primary human hepatocytes. Biochim Biophys Acta. 2008;1781(6–7):321–5.

    Article  CAS  PubMed  Google Scholar 

  29. Zarei M, Barroso E, Leiva R, Barniol-Xicota M, Pujol E, Escolano C, et al. Heme-regulated eIF2alpha kinase modulates hepatic FGF21 and is activated by PPARbeta/delta deficiency. Diabetes. 2016;65(10):3185–99.

    Article  CAS  PubMed  Google Scholar 

  30. Chen M, Hong H, Fang H, Kelly R, Zhou G, Borlak J, et al. Quantitative structure-activity relationship models for predicting drug-induced liver injury based on FDA-approved drug labeling annotation and using a large collection of drugs. Toxicol Sci. 2013;136(1):242–9.

    Article  CAS  PubMed  Google Scholar 

  31. Ritschel T, Hermans SM, Schreurs M, van den Heuvel JJ, Koenderink JB, Greupink R, et al. In silico identification and in vitro validation of potential cholestatic compounds through 3D ligand-based pharmacophore modeling of BSEP inhibitors. Chem Res Toxicol. 2014;27(5):873–81.

    Article  CAS  PubMed  Google Scholar 

  32. Morgan RE, Trauner M, van Staden CJ, Lee PH, Ramachandran B, Eschenberg M, et al. Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci. 2010;118(2):485–500.

    Article  CAS  PubMed  Google Scholar 

  33. Chen M, Vijay V, Shi Q, Liu Z, Fang H, Tong W. FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov Today. 2011;16(15–16):697–703.

    Article  PubMed  Google Scholar 

  34. Chen Q, Yang X, Zhang H, Kong X, Yao L, Cui X, et al. Metformin impairs systemic bile acid homeostasis through regulating SIRT1 protein levels. Biochim Biophys Acta. 2017;1864(1):101–12.

    Article  CAS  Google Scholar 

  35. Pedersen JM, Matsson P, Bergstrom CA, Hoogstraate J, Noren A, LeCluyse EL, et al. Early identification of clinically relevant drug interactions with the human bile salt export pump (BSEP/ABCB11). Toxicol Sci. 2013;136(2):328–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kis E, Ioja E, Nagy T, Szente L, Heredi-Szabo K, Krajcsi P. Effect of membrane cholesterol on BSEP/Bsep activity: species specificity studies for substrates and inhibitors. Drug Metab Dispos. 2009;37(9):1878–86.

    Article  CAS  PubMed  Google Scholar 

  37. Mita S, Suzuki H, Akita H, Hayashi H, Onuki R, Hofmann AF, et al. Vectorial transport of unconjugated and conjugated bile salts by monolayers of LLC-PK1 cells doubly transfected with human NTCP and BSEP or with rat Ntcp and Bsep. Am J Physiol Gastrointest Liver Physiol. 2006;290(3):G550–6.

    Article  CAS  PubMed  Google Scholar 

  38. Wolf KK, Vora S, Webster LO, Generaux GT, Polli JW, Brouwer KL. Use of cassette dosing in sandwich-cultured rat and human hepatocytes to identify drugs that inhibit bile acid transport. Toxicol in Vitro. 2010;24(1):297–309.

    Article  CAS  PubMed  Google Scholar 

  39. Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest. 2010;120(7):2355–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen SC, Brooks R, Houskeeper J, Bremner SK, Dunlop J, Viollet B, et al. Metformin suppresses adipogenesis through both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms. Mol Cell Endocrinol. 2017;440:57–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Molusky MM, Hsieh J, Lee SX, Ramakrishnan R, Tascau L, Haeusler RA, et al. Metformin and AMP kinase activation increase expression of the sterol transporters ABCG5/8 (ATP-binding cassette transporter G5/G8) with potential Antiatherogenic consequences. Arterioscler Thromb Vasc Biol. 2018;38(7):1493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chopra AR, Kommagani R, Saha P, Louet JF, Salazar C, Song J, et al. Cellular energy depletion resets whole-body energy by promoting coactivator-mediated dietary fuel absorption. Cell Metab. 2011;13(1):35–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang K, Pfeifer ND, Kock K, Brouwer KL. Species differences in hepatobiliary disposition of taurocholic acid in human and rat sandwich-cultured hepatocytes: implications for drug-induced liver injury. J Pharmacol Exp Ther. 2015;353(2):415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Song X, Chen Y, Valanejad L, Kaimal R, Yan B, Stoner M, et al. Mechanistic insights into isoform-dependent and species-specific regulation of bile salt export pump by farnesoid X receptor. J Lipid Res. 2013;54(11):3030–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kostrubsky VE, Strom SC, Hanson J, Urda E, Rose K, Burliegh J, et al. Evaluation of hepatotoxic potential of drugs by inhibition of bile-acid transport in cultured primary human hepatocytes and intact rats. Toxicol Sci. 2003;76(1):220–8.

    Article  CAS  PubMed  Google Scholar 

  46. Goodsell DS. The molecular perspective: tamoxifen and the estrogen receptor. Oncologist. 2002;7(2):163–4.

    Article  PubMed  Google Scholar 

  47. Chen Y, Vasilenko A, Song X, Valanejad L, Verma R, You S, et al. Estrogen and estrogen receptor-alpha-mediated Transrepression of bile Salt export pump. Mol Endocrinol. 2015;29(4):613–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Song X, Vasilenko A, Chen Y, Valanejad L, Verma R, Yan B, et al. Transcriptional dynamics of bile salt export pump during pregnancy: mechanisms and implications in intrahepatic cholestasis of pregnancy. Hepatology. 2014;60(6):1993–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yoshikawa Y, Miyashita T, Higuchi S, Tsuneyama K, Endo S, Tsukui T, et al. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries. Toxicol Appl Pharmacol. 2012;264(1):42–50.

    Article  CAS  PubMed  Google Scholar 

  50. Dawson PA, Lan T, Rao A. Bile acid transporters. J Lipid Res. 2009;50(12):2340–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garzel, B., Hu, T., Li, L. et al. Metformin Disrupts Bile Acid Efflux by Repressing Bile Salt Export Pump Expression. Pharm Res 37, 26 (2020). https://doi.org/10.1007/s11095-019-2753-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2753-x

KEY WORDS

Navigation