Skip to main content
Log in

Sustainable Dissolution Performance of a Carrier Tailored Electrospun

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study aims to conduct an impact investigation in the hydrophobic-hydrophilic balance as an important factor for dissolution improvement of a hydrophilic carrier-based solid dispersion system.

Methods

Polymeric carriers with different hydrophobic to hydrophilic ratios were used to prepare several electrospun solid dispersion formulations. Physicochemical properties and surface morphology of the samples were assessed using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR), polarized light microscopy, Differential Scanning Calorimetry (DSC), X-ray Powder Diffraction (XRPD) and Scanning Electron Microscopy (SEM). Dissolution study was conducted in a non-sink condition to assess the drug release.

Results

Incorporation of a higher amount of hydrophilic component showed an improvement in formulating a fully amorphous system based on XRPD, yet the dissolution rate increment showed no significant difference from the lower. Hence, the degree of crystallinity is proven not to be the crucial factor contributing to dissolution rate improvement. The presence of a concomitant hydrophobic component, however, showed ability in resisting precipitation and sustaining supersaturation.

Conclusion

Hydrophobicity in a binary carrier system plays an important role in achieving and maintaining the supersaturated state particularly for an amorphous solid dispersion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chan SY, Goh CF, Lau JY, Tiew YC, Balakrishnan T. Rice starch thin films as a potential buccal delivery system: effect of plasticiser and drug loading on drug release profile. Int J Pharm. 2019;562:203–11.

    Article  CAS  Google Scholar 

  2. Sun DD, Wen H, Taylor LS. Non-sink dissolution conditions for predicting product quality and in vivo performance of supersaturating drug delivery systems. J Pharm Sci. 2016;105(9):2477–88.

    Article  CAS  Google Scholar 

  3. Tougan T, Toya Y, Uchihashi K, Horii T. Application of the automated haematology analyzer XN-30 for discovery and development of anti-malarial drugs. Malar J. 2019;18(1):8.

    Article  Google Scholar 

  4. Kate L, Gokarna V, Borhade V, Prabhu P, Deshpande V, Pathak S, et al. Bioavailability enhancement of atovaquone using hot melt extrusion technology. Eur J Pharm Sci. 2016;86:103–14.

    Article  CAS  Google Scholar 

  5. Darade A, Pathak S, Sharma S, Patravale V. Atovaquone oral bioavailability enhancement using electrospraying technology. Eur J Pharm Sci. 2018;111:195–204.

    Article  CAS  Google Scholar 

  6. Takabe H, Warnken ZN, Zhang Y, Davis DA, Smyth HDC, Kuhn JG, et al. A Repurposed Drug for Brain Cancer: Enhanced Atovaquone Amorphous Solid Dispersion by Combining a Spontaneously Emulsifying Component with a Polymer Carrier. Pharmaceutics. 2018;10(2).

  7. Mohtar N, Khan NAK, Darwis Y. Solid lipid nanoparticles of Atovaquone based on 2(4) full-factorial design. Iran J Pharma Res. 2015;14(4):989–1000.

    CAS  Google Scholar 

  8. Borhade V, Pathak S, Sharma S, Patravale V. Formulation and characterization of atovaquone nanosuspension for improved oral delivery in the treatment of malaria. Nanomedicine. 2014;9(5):649–66.

    Article  CAS  Google Scholar 

  9. Braghirolli DI, Steffens D, Pranke P. Electrospinning for regenerative medicine: a review of the main topics. Drug Discov Today. 2014;19(6):743–53.

    Article  CAS  Google Scholar 

  10. Zamani M, Prabhakaran MP, Ramakrishna S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomedicine. 2013;8:2997–3017.

    PubMed  PubMed Central  Google Scholar 

  11. Domokos A, Balogh A, Denes D, Nyerges G, Zodi L, Farkas B, et al. Continuous manufacturing of orally dissolving webs containing a poorly soluble drug via electrospinning. Eur J Pharm Sci. 2019;130:91–9.

    Article  CAS  Google Scholar 

  12. Illangakoon UE, Gill H, Shearman GC, Parhizkar M, Mahalingam S, Chatterton NP, et al. Fast dissolving paracetamol/caffeine nanofibers prepared by electrospinning. Int J Pharm. 2014;477(1–2):369–79.

    Article  CAS  Google Scholar 

  13. Kazsoki A, Szabo P, Domjan A, Balazs A, Bozo T, Kellermayer M, et al. Microstructural distinction of electrospun Nanofibrous drug delivery systems formulated with different excipients. Mol Pharm. 2018;15(9):4214–25.

    Article  CAS  Google Scholar 

  14. Janssens S, Nagels S, Armas HN, D'Autry W, Van Schepdael A, Van den Mooter G. Formulation and characterization of ternary solid dispersions made up of Itraconazole and two excipients, TPGS 1000 and PVPVA 64, that were selected based on a supersaturation screening study. Eur J Pharm Biopharm. 2008;69(1):158–66.

    Article  CAS  Google Scholar 

  15. Alagdar GSA, Oo MK, Sengupta P, Mandal UK, Jaffri JM, Chatterjee B. Development of a binary carrier system consisting polyethylene glycol 4000 - ethyl cellulose for ibuprofen solid dispersion. Int J Pharm Investig. 2017;7(3):142–8.

    Article  CAS  Google Scholar 

  16. Tipduangta P, Belton P, Fabian L, Wang LY, Tang H, Eddleston M, et al. Electrospun polymer blend Nanofibers for tunable drug delivery: the role of transformative phase separation on controlling the release rate. Mol Pharm. 2016;13(1):25–39.

    Article  CAS  Google Scholar 

  17. Gradin P, Howgate PG, Seldén R, Brown RA. 16 - dynamic-mechanical properties. In: Allen G, Bevington JC, editors. Comprehensive polymer science and supplements. Amsterdam: Pergamon; 1989. p. 533–69.

    Chapter  Google Scholar 

  18. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun Nanofibers: methods, materials, and applications. Chem Rev. 2019;119(8):5298–415.

    Article  CAS  Google Scholar 

  19. Haider A, Haider S, Kang I-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. 2018;11(8):1165–88.

    Article  CAS  Google Scholar 

  20. Haider S, Al-Zeghayer Y, Ahmed Ali FA, Haider A, Mahmood A, Al-Masry WA, et al. Highly aligned narrow diameter chitosan electrospun nanofibers. J Polym Res. 2013;20(4):105.

    Article  Google Scholar 

  21. Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer. 1999;40(16):4585–92.

    Article  CAS  Google Scholar 

  22. Shi NQ, Wang SR, Zhang Y, Huo JS, Wang LN, Cai JH, et al. Hot melt extrusion technology for improved dissolution, solubility and "spring-parachute" processes of amorphous self-micellizing solid dispersions containing BCS II drugs indomethacin and fenofibrate: profiles and mechanisms. Eur J Pharm Sci. 2019;130:78–90.

    Article  CAS  Google Scholar 

  23. Danda LJA, Batista LM, Melo VCS, Soares Sobrinho JL, Soares MFR. Combining amorphous solid dispersions for improved kinetic solubility of posaconazole simultaneously released from soluble PVP/VA64 and an insoluble ammonio methacrylate copolymer. Eur J Pharm Sci. 2019;133:79–85.

    Article  CAS  Google Scholar 

  24. Skrdla PJ, Floyd PD, Dell'Orco PC. Predicted amorphous solubility and dissolution rate advantages following moisture sorption: case studies of indomethacin and felodipine. Int J Pharm. 2019;555:100–8.

    Article  CAS  Google Scholar 

  25. Chan S-Y, Chung Y-Y, Cheah X-Z, Tan EY-L, Quah J. The characterization and dissolution performances of spray dried solid dispersion of ketoprofen in hydrophilic carriers. Asian J Pharma Sci. 2015;10(5):372–85.

    Article  Google Scholar 

  26. Khougaz K, Clas SD. Crystallization inhibition in solid dispersions of MK-0591 and poly(vinylpyrrolidone) polymers. J Pharm Sci. 2000;89(10):1325–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

The authors acknowledge the financial support received from the grant 203/PFARMASI/6711686, Fundamental Research Grant Scheme (FRGS) Malaysia in carrying out this work. The authors would like to express their gratitude to Emeritus Prof. Dr. Yuen Kah Hay in providing the instrumental accessibility used in this study. The authors would like to thank Mr. Edward Tan Kong Weng for the proofreading service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siok-Yee Chan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teoh, XY., Yeoh, Y., Yoong, LK. et al. Sustainable Dissolution Performance of a Carrier Tailored Electrospun. Pharm Res 37, 28 (2020). https://doi.org/10.1007/s11095-019-2734-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2734-0

KEY WORDS

Navigation