Skip to main content

On-Demand Manufacturing of Direct Compressible Tablets: Can Formulation Be Simplified?



Oral direct compressible tablets are the most frequently used drug products. Manufacturing of tablets requires design and development of formulations, which need a number of excipients. The choice of excipients depends on the concentration, manufacturability, stability, and bioavailability of the active pharmaceutical ingredients (APIs). At MIT, we developed a miniature platform for on-demand manufacturing of direct compressible tablets. This study investigated how formulations could be simplified to use a small number of excipients for a number of different API’s in which long term stability is not required.


Direct compressible tablets of five pharmaceutical drugs, Diazepam, Diphenhydramine HCl, Doxycycline Monohydrate, Ibuprofen, and Ciprofloxacin HCl, with different drug loadings, were made using direct compression in an automated small scale system.. The critical quality attributes (CQA) of the tablets were assessed for the quality standards set by the United States Pharmacopeia (USP).


This miniature system can manufacture tablets - on-demand from crystalline API using the minimum number of excipients required for drug product performance. All drug tablets met USP quality standards after manufacturing and after 2 weeks of accelerated stability test, except for slightly lower drug release for Ibuprofen.


On-demand tablets manufacturing where there is no need for long term stability using a flexible, miniature, automated (integrated) system will simplify pharmaceutical formulation design compared to traditional formulations. This advancement will offer substantial economic benefits by decreasing product time-to-market and enhancing quality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



Active pharmaceutical ingredient


Acceptance value


Biopharmaceutics classification system


Ciprofloxacin HCl


Critical quality attributes


Defense Advanced Research Project Agency


Direct compression




Diphenhydramine HCl


Doxycycline monohydrate


Freeman technology


Flow function coefficient


Gastrointestinal tract


Good manufacturing practice


High performance liquid chromatography




Microcrystalline cellulose


Massachusetts Institute of Technology


National formulary


Process analytical technologies



Q value:

Percentage of label claim of drug dissolved


Relative humidity


Relative standard deviation


Silicified microcrystalline cellulose

t80 :

Time it takes for 80% of the drug to dissolve


United States Pharmacopeia




  1. 1.

    Darji MA, Lalge RM, Marathe SP, Mulay TD, Fatima T, Alshammari A, et al. Excipient stability in oral solid dosage forms: a review. AAPS PharmSciTech. 2018;19:12–26.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Augsburgerand LL, Hoag SW. Pharmaceutical dosage forms-tablets. CRC Press; 2016.

  3. 3.

    Qiu Y, Chen Y, Zhang GG, Yu L, Mantri RV. Developing solid oral dosage forms: pharmaceutical theory and practice. Academic Press; 2016.

  4. 4.

    Murthyand SN, Repka MA. Excipient stability: a critical aspect in stability of pharmaceuticals. Springer; 2017.

  5. 5.

    Gad SC. Oral drug formulation development in pharmaceutical lead selection stage. Oral formulation roadmap from early drug discovery to development. 2017. p. 339.

  6. 6.

    Lawrence XY, Amidon G, Khan MA, Hoag SW, Polli J, Raju G, et al. Understanding pharmaceutical quality by design. AAPS J. 2014;16:771–83.

    Article  Google Scholar 

  7. 7.

    Narang AS, Desai D, Badawy S. Impact of excipient interactions on solid dosage form stability. Excipient applications in formulation design and drug delivery. Springer; 2015, pp. 93–137.

  8. 8.

    Meier R, Moll KP, Krumme M, Kleinebudde P. Simplified, high druge-loaded formulations containing hydrochlorothiazide for twin-screw granulation. Chem Ing Tech. 2017;89:1025–33.

    CAS  Article  Google Scholar 

  9. 9.

    Meier R, Thommes M, Rasenack N, Krumme M, Moll K-P, Kleinebudde P. Simplified formulations with high drug loads for continuous twin-screw granulation. Int J Pharm. 2015;496:12–23.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Azad MA, Osorio JG, Brancazio D, Hammersmith G, Klee DM, Rapp K, et al. A compact, portable, re-configurable, and automated system for on-demand pharmaceutical tablet manufacturing. Int J Pharm. 2018;539:157–64.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    A.P. Review. SuperTab®21AN Anhydrous lactose from DFE Pharma. Accessed 28 May 2019.

  12. 12.

    D. Pharma. SuperTab® 21AN. Accessed 28 May 2019.

  13. 13.

    Amidon GE, Secreast PJ, Mudie D. Particle, powder, and compact characterization. Developing solid oral dosage forms: Pharmaceutical theory and practice: Academic Press; New York, 2009. p. 163–86.

    Chapter  Google Scholar 

  14. 14.

    Knieke C, Azad MA, D. To, Bilgili E, Davé RN. Sub-100 micron fast dissolving nanocomposite drug powders. Powder Technol. 2015;271:49–60.

    CAS  Article  Google Scholar 

  15. 15.

    Schulze D. Powders and bulk solids. Behaviour, characterization, storage and flow. Springer; 2008. pp. 35–74.

  16. 16.

    Freeman R. Measuring the flow properties of consolidated, conditioned and aerated powders—a comparative study using a powder rheometer and a rotational shear cell. Powder Technol. 2007;174:25–33.

    CAS  Article  Google Scholar 

  17. 17.

    DailyMed. Current medication information-Diazepam 10 mg tablet, Diphenhydramine HCl 25 mg tablet, Doxycycline Monohydrate 50 mg tablet, Ibuprofen 200 mg tablet, Ciprofloxacin HCl 250 mg tablet.;;;; Accessed 22 Sept 2019.

  18. 18.

    Rowe RC, Sheskey PJ, Quinn M. Handbook of pharmaceutical excipients–7th edition. Pharm Dev Technol. 2013;18:544.

    Article  Google Scholar 

  19. 19.

    Razavi SM, Callegari G, Drazer G, Cuitiño AM. Toward predicting tensile strength of pharmaceutical tablets by ultrasound measurement in continuous manufacturing. Int J Pharm. 2016;507:83–9.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Pharmacopeia, U. S. “USP 39 NF 34”. 2015.

  21. 21.

    Pharmacopeia, U. S. “USP–NF General Chapter<905> Uniformity of Dosage Units”. 2015.

  22. 22.

    Newton J, Rowley G, Fell J, Peacock D, Ridgway K. Computer analysis of the relation between tablet strength and compaction pressure. J Pharm Pharmacol. 23:1971.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Abdullahand E, Geldart D. The use of bulk density measurements as flowability indicators. Powder Technol. 1999;102:151–65.

    Article  Google Scholar 

  24. 24.

    Sun CC. Setting the bar for powder flow properties in successful high speed tableting. Powder Technol. 2010;201:106–8.

    CAS  Article  Google Scholar 

  25. 25.

    Han X, Ghoroi C, Davé R. Dry coating of micronized API powders for improved dissolution of directly compacted tablets with high drug loading. Int J Pharm. 2013;442:74–85.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Jenike AW. Storage and flow of solids. Bulletin No. 123; Vol. 53, No. 26, November 1964, Utah Univ., Salt Lake City (USA) 1976.

  27. 27.

    Seton L, Roberts M, Ur-Rehman F. Compaction of recrystallised ibuprofen. Chem Eng J. 2010;164:449–52.

    CAS  Article  Google Scholar 

  28. 28.

    Tye CK, Sun CC, Amidon GE. Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. J Pharm Sci. 2005;94:465–72.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Sinka I, Motazedian F, Cocks A, Pitt K. The effect of processing parameters on pharmaceutical tablet properties. Powder Technol. 2009;189:276–84.

    CAS  Article  Google Scholar 

  30. 30.

    Sun W-J, Aburub A, Sun CC. Particle engineering for enabling a formulation platform suitable for manufacturing low-dose tablets by direct compression. J Pharm Sci. 2017.

  31. 31.

    Nokhodchiand A, Javadzadeh Y. The effect of storage conditions on the physical stability of tablets. Pharm Technol Eur. 2007;19:20.

    Google Scholar 

  32. 32.

    Alderbornand G, Ahlneck C. Moisture adsorption and tabletting. III Effect on tablet strenght-post compaction storage time profiles. Int J Pharm. 1991;73:249–58.

    Article  Google Scholar 

  33. 33.

    Cory WC, Harris C, Martinez S. Accelerated degradation of ibuprofen in tablets. Pharm Dev Technol. 2010;15:636–43.

    PubMed  Article  Google Scholar 

  34. 34.

    Narang AS, Rao VM, Raghavan KS. Excipient compatibility. Developing solid oral dosage forms. Elsevier; 2009. pp. 125–145.

  35. 35.

    Saleki-Gerhardt A, Ahlneck C, Zografi G. Assessment of disorder in crystalline solids. Int J Pharm. 1994;101:237–47.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Allan S. Myerson.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 41.3 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azad, M.A., Osorio, J.G., Wang, A. et al. On-Demand Manufacturing of Direct Compressible Tablets: Can Formulation Be Simplified?. Pharm Res 36, 167 (2019).

Download citation


  • direct compressible tablets
  • formulation simplification
  • integrated pharmaceutical manufacturing
  • on-demand manufacturing
  • oral solid dosage