Skip to main content

Advertisement

Log in

Stability and Biological Activity of E. coli Derived Soluble and Precipitated Bone Morphogenetic Protein-2

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

There is a plethora of studies on recombinant human bone morphogenetic protein-2 (rhBMP-2) application and delivery systems, but surprisingly few reports address the biophysical properties of the protein which are of crucial importance to develop effective delivery systems or to solve general problems related to rhBMP-2 production, purification, analysis and application.

Methods

The solubility, stability and bioactivity of rhBMP-2 obtained by renaturation of E. coli derived inclusion bodies was assessed at different pH and in different buffer systems using (dynamic) light scattering and thermal shift assays as well as intrinsic fluorescence measurements and luciferase based bioassays.

Results

rhBMP-2 is poorly soluble at physiological pH and higher. The presence of divalent anions further decreases the solubility even under acidic conditions. Thermal stability analyses revealed that rhBMP-2 precipitates are more stable compared to the soluble protein. Moreover, correctly folded rhBMP-2 is also bioactive as precipitated protein and precipitates readily dissolve under appropriate buffer conditions. Once properly formed rhBMP-2 also retains biological activity after temporary exposure to high concentrations of chaotropic denaturants. However, care should be taken to discriminate bioactive rhBMP-2 precipitates from misfolded rhBMP-2 aggregates, e.g. resolvability in MES buffer (pH 5) and a discrete peak in thermoshift experiments are mandatory for correctly folded rhBMP-2.

Conclusions

Our analysis revealed that E. coli derived rhBMP-2 precipitates are not only bioactive but are also more stable compared to the soluble dimeric molecules. Knowledge about these unusual properties will be helpful to design improved delivery systems requiring lower amounts of rhBMP-2 in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BRE-Luc:

BMP responsive element luciferase

CHO:

Chinese hamster ovary

DLS:

Dynamic light scattering

E. coli :

Escherichia coli

Gdn-HCl:

Guanidine hydrochloride

nRFU:

normalized relative fluorescence units

nRLU:

normalized relative light units

pI:

Isoelectric point

rhBMP-2:

Recombinant human bone morphogenetic protein 2

RLU:

Relative light units

TGF-β:

Transforming growth factor β

Tm:

Denaturation (melting) temperature

References

  1. Celeste AJ, Iannazzi JA, Taylor RC, Hewick RM, Rosen V, Wang EA, et al. Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone. Proc Natl Acad Sci USA. 1990;87:9843–7.

    Article  CAS  Google Scholar 

  2. Scheufler C, Sebald W, Hülsmeyer M. Crystal structure of human bone morphogenetic protein-2 at 2.7 Å resolution. J Mol Biol. 1999;287:103–15.

    Article  CAS  Google Scholar 

  3. Uludag H, D'Augusta D, Golden J, Li J, Timony G, Riedel R, et al. Implantation of recombinant human bone morphogenetic proteins with biomaterial carriers: a correlation between protein pharmacokinetics and osteoinduction in the rat ectopic model. J Biomed Mater Res. 2000;50:227–38.

    Article  CAS  Google Scholar 

  4. McKay WF, Peckham SM, Badura JM. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE bone graft). Int Orthop. 2007;31:729–34.

    Article  Google Scholar 

  5. Granjeiro JM, Oliveira RC, Bustos-Valenzuela JC, Sogayar MC, Taga R. Bone morphogenetic proteins: from structure to clinical use. Braz J Med Biol Res. 2005;38:1463–73.

    Article  CAS  Google Scholar 

  6. El Bialy I, Jiskoot W, Reza NM. Formulation, delivery and stability of bone morphogenetic proteins for effective bone regeneration. Pharm Res. 2017;34:1152–70.

    Article  Google Scholar 

  7. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, et al. Novel regulators of bone formation: molecular clones and activities. Science. 1988;242:1528–34.

    Article  CAS  Google Scholar 

  8. Walsh G. Biopharmaceutical benchmarks 2010. Nat Biotechnol. 2010;28:917–24.

    Article  CAS  Google Scholar 

  9. Vallejo LF, Rinas U. Optimized procedure for renaturation of recombinant human bone morphogenetic protein-2 at high protein concentration. Biotechnol Bioeng. 2004;85:601–9.

    Article  CAS  Google Scholar 

  10. Quaas B, Burmeister L, Li Z, Nimtz M, Hoffmann A, Rinas U. Properties of dimeric, disulfide-linked rhBMP-2 recovered from E. coli derived inclusion bodies by mild extraction or chaotropic solubilisation and subsequent refolding. Process Biochem. 2018;67:80–7.

    Article  CAS  Google Scholar 

  11. van de Watering FC, van den Beucken JJ, van der Woning SP, Briest A, Eek A, Qureshi H, et al. Non-glycosylated BMP-2 can induce ectopic bone formation at lower concentrations compared to glycosylated BMP-2. J Control Release. 2012;159:69–77.

    Article  Google Scholar 

  12. Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol. 2003;21:1025–32.

    Article  CAS  Google Scholar 

  13. Katagiri T, Yamaguchi A, Ikeda T, Yoshiki S, Wozney JM, Rosen V, et al. The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun. 1990;172:295–9.

    Article  CAS  Google Scholar 

  14. Kisiel M, Ventura M, Oommen OP, George A, Walboomers XF, Hilborn J, et al. Critical assessment of rhBMP-2 mediated bone induction: an in vitro and in vivo evaluation. J Control Release. 2012;162:646–53.

    Article  CAS  Google Scholar 

  15. Schwartz D, Sofia S, Friess W. Integrity and stability studies of precipitated rhBMP-2 microparticles with a focus on ATR-FTIR measurements. Eur J Pharm Biopharm. 2006;63:241–8.

    Article  CAS  Google Scholar 

  16. Sofia SJ, Schwartz D, Friess W. Formulation comprising bioactive agents and method of using them. US Patent 7,897,174 B2. 2011.

  17. Sampath TK, Reddi AH. Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation. Proc Natl Acad Sci USA. 1981;78:7599–603.

    Article  CAS  Google Scholar 

  18. Luca L, Capelle MA, Machaidze G, Arvinte T, Jordan O, Gurny R. Physical instability, aggregation and conformational changes of recombinant human bone morphogenetic protein-2 (rhBMP-2). Int J Pharm. 2010;391:48–54.

    Article  CAS  Google Scholar 

  19. Abbatiello SE, Porter TJ. Anion-mediated precipitation of recombinant human bone morphogenetic protein (rhBMP-2) is dependent upon the heparin binding N-terminal region. Poster presented at the Protein Society Meeting, Boston MA, July 13–16. 1997.

  20. Gilde F, Maniti O, Guillot R, Mano JF, Logeart-Avramoglou D, Sailhan F, et al. Secondary structure of rhBMP-2 in a protective biopolymeric carrier material. Biomacromolecules. 2012;13:3620–6.

    Article  CAS  Google Scholar 

  21. Yano K, Hoshino M, Ohta Y, Manaka T, Naka Y, Imai Y, et al. Osteoinductive capacity and heat stability of recombinant human bone morphogenetic protein-2 produced by Escherichia coli and dimerized by biochemical processing. J Bone Miner Metab. 2009;27:355–63.

    Article  CAS  Google Scholar 

  22. Ruppert R, Hoffmann E, Sebald W. Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur J Biochem. 1996;237:295–302.

    Article  CAS  Google Scholar 

  23. Vallejo LF, Brokelmann M, Marten S, Trappe S, Cabrera-Crespo J, Hoffmann A, et al. Renaturation and purification of bone morphogenetic protein-2 produced as inclusion bodies in high-cell-density cultures of recombinant Escherichia coli. J Biotechnol. 2002;94:185–94.

    Article  CAS  Google Scholar 

  24. Georgiou CD, Grintzalis K, Zervoudakis G, Papapostolou I. Mechanism of Coomassie brilliant blue G-250 binding to proteins: a hydrophobic assay for nanogram quantities of proteins. Anal Bioanal Chem. 2008;391:391–403.

    Article  CAS  Google Scholar 

  25. Demeule B, Gurny R, Arvinte T. Detection and characterization of protein aggregates by fluorescence microscopy. Int J Pharm. 2007;329:37–45.

    Article  CAS  Google Scholar 

  26. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev. 2015;82:518–29.

    Article  CAS  Google Scholar 

  27. Boivin S, Kozak S, Meijers R. Optimization of protein purification and characterization using Thermofluor screens. Protein Expr Purif. 2013;91:192–206.

    Article  CAS  Google Scholar 

  28. Lorenz C, Hoffmann A, Gross G, Windhagen H, Dellinger P, Mohwald K, et al. Coating of titanium implant materials with thin polymeric films for binding the signaling protein BMP2. Macromol Biosci. 2011;11:234–44.

    Article  CAS  Google Scholar 

  29. Korchynskyi O, ten Dijke P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem. 2002;277:4883–91.

    Article  CAS  Google Scholar 

  30. Martinez-Rosell G, Giorgino T, De FG. PlayMolecule ProteinPrepare: a web application for protein preparation for molecular dynamics simulations. J Chem Inf Model. 2017;57:1511–6.

    Article  CAS  Google Scholar 

  31. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF chimera - a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.

    Article  CAS  Google Scholar 

  32. Bolten SN, Rinas U, Scheper T. Heparin: role in protein purification and substitution with animal-component free material. Appl Microbiol Biotechnol. 2018;102:8647–60.

    Article  CAS  Google Scholar 

  33. Zhou C, Qi W, Lewis EN, Carpenter JF. Characterization of sizes of aggregates of insulin analogs and the conformations of the constituent protein molecules: a concomitant dynamic light scattering and raman spectroscopy study. J Pharm Sci. 2016;105:551–8.

    Article  CAS  Google Scholar 

  34. Urist MR, Huo YK, Brownell AG, Hohl WM, Buyske J, Lietze A, et al. Purification of bovine bone morphogenetic protein by hydroxyapatite chromatography. Proc Natl Acad Sci USA. 1984;81:371–5.

    Article  CAS  Google Scholar 

  35. Rao MT, Bhuyan AK, Venu K, Sastry VS. Nonlinear effect of GdnHCl on hydration dynamics of proteins: a 1H magnetic relaxation dispersion study. J Phys Chem B. 2009;113:6994–7002.

    Article  CAS  Google Scholar 

  36. Kumar R, Bhuyan AK. Entropic stabilization of myoglobin by subdenaturing concentrations of guanidine hydrochloride. J Biol Inorg Chem. 2009;14:11–21.

    Article  CAS  Google Scholar 

  37. Sole M, Brandt W, Arnold U. Striking stabilization of Rana catesbeiana ribonuclease 3 by guanidine hydrochloride. FEBS Lett. 2013;587:737–42.

    Article  CAS  Google Scholar 

  38. Mayr LM, Schmid FX. Stabilization of a protein by guanidinium chloride. Biochemistry. 1993;32:7994–8.

    Article  CAS  Google Scholar 

  39. Vallejo LF, Rinas U. Folding and dimerization kinetics of bone morphogenetic protein-2, a member of the transforming growth factor-β family. FEBS J. 2013;280:83–92.

    Article  CAS  Google Scholar 

  40. Roberts D, Keeling R, Tracka M, van der Walle CF, Uddin S, Warwicker J, et al. Specific ion and buffer effects on protein-protein interactions of a monoclonal antibody. Mol Pharm. 2015;12:179–93.

    Article  CAS  Google Scholar 

  41. Roberts CJ. Therapeutic protein aggregation: mechanisms, design, and control. Trends Biotechnol. 2014;32:372–80.

    Article  CAS  Google Scholar 

  42. Schmoekel H, Schense JC, Weber FE, Gratz KW, Gnagi D, Muller R, et al. Bone healing in the rat and dog with nonglycosylated BMP-2 demonstrating low solubility in fibrin matrices. J Orthop Res. 2004;22:376–81.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors gratefully acknowledge funding through the Forschergruppe “Gradierte Implantate” FOR2180 and the Exzellenzcluster “Rebirth” EXC62, both Deutsche Forschungsgemeinschaft (DFG), and excellent technical assistance by Anika Hamm (bioactivity measurements), Graded Implants and Regenerative Strategies. We also want to thank the reviewers for their careful and critical reading which helped a lot to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Rinas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quaas, B., Burmeister, L., Li, Z. et al. Stability and Biological Activity of E. coli Derived Soluble and Precipitated Bone Morphogenetic Protein-2. Pharm Res 36, 184 (2019). https://doi.org/10.1007/s11095-019-2705-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2705-5

KEY WORDS

Navigation