Pharmaceutical Research

, 36:183 | Cite as

Remote Controlled Autonomous Microgravity Lab Platforms for Drug Research in Space

  • Shimon AmselemEmail author
Expert Review
Part of the following topical collections:
  1. Medicines in Space


Research conducted in microgravity conditions has the potential to yield new therapeutics, as advances can be achieved in the absence of phenomena such as sedimentation, hydrostatic pressure and thermally-induced convection. The outcomes of such studies can significantly contribute to many scientific and technological fields, including drug discovery. This article reviews the existing traditional microgravity platforms as well as emerging ideas for enabling microgravity research focusing on SpacePharma’s innovative autonomous remote-controlled microgravity labs that can be launched to space aboard nanosatellites to perform drug research in orbit. The scientific literature is reviewed and examples of life science fields that have benefited from studies in microgravity conditions are given. These include the use of microgravity environment for chemical applications (protein crystallization, drug polymorphism, self-assembly of biomolecules), pharmaceutical studies (microencapsulation, drug delivery systems, behavior and stability of colloidal formulations, antibiotic drug resistance), and biological research, including accelerated models for aging, investigation of bacterial virulence , tissue engineering using organ-on-chips in space, enhanced stem cells proliferation and differentiation.


lab-on-chips microgravity research nanosatellites organ-on-chips parabolic flights 







Active pharmaceutical ingredients


Center for the Advancement of Science in Space


Centre National d’Etudes Spatiales


Colloidal systems


Canadian Space Agency


Deutschen Zentrums für Luft- und Raumfahrt


European Space Agency


Growth hormone


Human biliary tree stem/progenitor cells


Human mesenchymal stem cells


Indian Space Research Organization


International Space Station


Japan Aerospace Exploration Agency


Leucine-rich repeat kinase 2


Microencapsulation electrostatic processing system-II




Methicillin-resistant Staphylococcus aureus


National Aeronautics and Space Administration


National Center for Advancing Translational Sciences


National Institutes of Health




Random positioning machine


Rotating wall vessel


Simulated microgravity


SpacePharma advanced microgravity lab


SpacePharma microgravity lab


Tyrosine hydroxylase.



The author acknowledges funding support and grants to SpacePharma from the Israel Innovation Authority, Israel Space Agency, European H2020-SME2 grant 718,717, Italian Space Agency, US NIH/NCATS/NIBIB/CASIS Chips in Space projects grants 1-UG3-TR-002198-01 and 1-UG3-TR-002598-01. Dr. Sara Eyal from the Hebrew University is acknowledged for her helpful comments. The author is an employee of SpacePharma.


  1. 1.
    McPherson A, DeLucas LJ. Microgravity protein crystallization. npj Microgravity. 2015;1:15010.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Deschamps J. The role of crystallography in drug design. Drug Addiction. New York: Springer; 2008. p. 343–55.CrossRefGoogle Scholar
  3. 3.
    Eyal S, Derendorf H. Medications in space: in search of a pharmacologist’s guide to the galaxy. Pharm Res. 2019;36(10):148.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Biolo G, Heer M, Narici M, Strollo F. Microgravity as a model of ageing. Current opinion in clinical nutrition and metabolic care. 2003;6(1):31–40.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Di Giulio C. Do we age faster in absence of gravity? Front Physiol. 2013;4:134.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Vernikos J, Schneider VS. Space, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review. Gerontology. 2010;56(2):157–66.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Le Bourg E. A review of the effects of microgravity and of hypergravity on aging and longevity. Exp Gerontol. 1999;34(3):319–36.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Wilson JW, Ott CM, Quick L, Davis R, Honer zu Bentrup K, Crabbe A, et al. Media ion composition controls regulatory and virulence response of Salmonella in spaceflight. PloS One. 2008;3(12):e3923.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Braddock M. From target identification to drug development in space: using the microgravity assist. Curr Drug Discov Technol. 2019.Google Scholar
  10. 10.
    National Aeronautics and Space Administration. Cancer targeted treatments from space station discoveries. Available from: Updated February 26 2014. Accessed 26 Aug 2019.
  11. 11.
    Thomas VA, Prasad NS, Reddy CAM. Microgravity research platforms – a study. Curr Sci. 2000;79:336–40.Google Scholar
  12. 12.
    Borst AG, van Loon JJWA. Technology and developments for the random positioning machine. RPM Microgravity Sci Technol 2008;21(4):287.CrossRefGoogle Scholar
  13. 13.
    Wuest SL, Richard S, Kopp S, Grimm D, Egli M. Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture. Biomed Res Int. 2015;2015:8.CrossRefGoogle Scholar
  14. 14.
    Klaus DM. Clinostats and bioreactors. Gravit Space Biol Bull. 2001;14(2):55–64.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hemmersbach R, von der Wiesche M, Seibt D. Ground-based experimental platforms in gravitational biology and human physiology. Signal Transduction 2006;6(6):381–7.CrossRefGoogle Scholar
  16. 16.
    Crabbe A, De Boever P, Van Houdt R, Moors H, Mergeay M, Cornelis P. Use of the rotating wall vessel technology to study the effect of shear stress on growth behaviour of Pseudomonas aeruginosa PA01. Environ Microbiol. 2008;10(8):2098–110.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Center of Applied Space Technology and Microgravity. The Bremen drop tower. Available at Accessed 26 Aug 2019.
  18. 18.
    Ruyters G, Friedrich U. From the Bremen drop tower to the international space station ISS – ways to weightlessness in the German space life sciences program. Signal Transduction 2006;6(6):397–405.CrossRefGoogle Scholar
  19. 19.
    de Crombrugghe G, Pletser V. Emerging microgravity platforms and their capabilities compared to the traditional offering. 67th International Astronautical Congress (IAC), International Astronautical Federation (IAF), Adelaide, Australia, 25–29 September 2017.Google Scholar
  20. 20.
    ISS U.S. National Laboratory. About the ISS National lab. Science in space to benefit life on earth. Available from Accessed 25 Aug 2019.
  21. 21.
    National Aeronautics and Space Administration. Designing a key to unlock Parkinson’s disease. Available from Updated July 30 2019. Accessed 27 Aug 2019.
  22. 22.
    National Aeronautics and Space Administration. Crystallization of LRRK2 under microgravity conditions. Available from Accessed 27 Aug 2019.
  23. 23.
    Space Coast SPACE MEDICINE: NASA’s ISS rodent research-8 experiment examines physiology of aging. Available from Published January 17 2019. Updated August 27 2019.
  24. 24.
    Space Station Research Explorer on Efficacy and metabolism of azonafide Antibody-Drug Conjugates (ADCs) in microgravity. Available from Accessed 26 Aug 2019.
  25. 25.
    National Aeronautics and Space Administration. International Space Station. Microgravity research coming of age on the International Space Station. Available from Updataed October 26 2012. Accessed 26 Aug 2019.
  26. 26.
    Howell E. International Space Station: facts, history & tracking. Available from Accessed 26 Aug 2019.
  27. 27.
    Beck A, Goetsch L, Dumontet C, Corvaia N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16:315–37.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Nature Rev Immunol 2010;10:345–52.CrossRefGoogle Scholar
  29. 29.
    Allison T, Munshi S. Protein crystallography in drug design: current bottlenecks. European Pharmaceutical Review 2007;12(5):59.Google Scholar
  30. 30.
    Takahashi S, Ohta K, Furubayashi N, Yan B, Koga M, Wada Y, Yamada M, Inaka K, Tanaka H, Miyoshi H, Kobayashi T. JAXA protein crystallization in space: ongoing improvements for growing high-quality crystals. J Synchrotron Radiat. 2013;20(6):968–973.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    National Aeronautics and Space Administration. Protein crystals in microgravity. Availble from Updated August 7 2017. Accessed 27 Aug 2019.
  32. 32.
    Howard J. Space station crew cultivates crystals for drug development. Available from Published March 31 2017. Accessed 26 Aug 2019.
  33. 33.
    Debe MK, Kam KK. Effect of gravity on copper phthalocyanine thin films II: spectroscopic evidence for a new oriented thin film polymorph of copper phthalocyanine grown in a microgravity enviroment. Thin Solid Films. 1990;186(2):289–325.CrossRefGoogle Scholar
  34. 34.
    Takahashi S, Tsurumura T, Aritake K, Furubayashi N, Sato M, Yamanaka M, et al. High-quality crystals of human haematopoietic prostaglandin D synthase with novel inhibitors. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010;66(Pt 7):846–50.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Tanaka H, Tsurumura T, Aritake K, Furubayashi N, Takahashi S, Yamanaka M, et al. Improvement in the quality of hematopoietic prostaglandin D synthase crystals in a microgravity environment. J Synchrotron Radiat. 2011;18:88–91.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    National Aeronautics and Space Administration. Microgravity growth of crystalline monoclonal antibodies for pharmaceutical applications. Avilable from; .
  37. 37.
    Williamson SE. ISS U.S. National Lab. Continuing innovations in life sciences research on the space station. Available from Published June 7 2018. Accessed 29 Aug 2019.
  38. 38.
    Williamson SE. Upword. Magazine of the ISS National lab. Reshaping drug delivery. Millions of Crystals at a Time Available from Accessed 29 Aug 2019.
  39. 39.
    Lu J, Rohani S. Polymorphism and crystallization of active pharmaceutical ingredients (APIs). Curr Med Chem. 2009;16(7):884–905.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Nanjwade VK, Manvi FV, Ali MS, Nanjwade BK, Maste MM. New trends in the co-crystallization of active pharmaceutical ingredients. J Appl Pharm Sci. 2011;1(8):1–5.Google Scholar
  41. 41.
    Gupta H, Kumar S, Roy SK, Gaud RS. Patent protection strategies. J Pharm Bioallied Sci. 2010;2(1):2–7.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Trask AV. An overview of pharmaceutical cocrystals as intellectual property. Mol Pharm. 2007;4(3):301–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Reches M, Gazit E. Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications. Phys Biol. 2006;3(1):S10–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Bell D, Durrance S, Kirk D, Gutierrez H, Woodard D, Avendano J, et al. Self-assembly of protein fibrils in microgravity. Gravit Space Res. 2018;6(1).Google Scholar
  45. 45.
    Dubey J, Ratnakaran N, Koushika SP. Neurodegeneration and microtubule dynamics: death by a thousand cuts. Front Cell Neurosci. 2015;9:343.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Needleman DJ, Ojeda-Lopez MA, Raviv U, Miller HP, Li Y, Song C, et al. Ion specific effects in bundling and depolymerization of taxol-stabilized microtubules. Faraday Discuss. 2013;166:31–45.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ojeda-Lopez MA, Needleman DJ, Song C, Ginsburg A, Kohl PA, Li Y, et al. Transformation of taxol-stabilized microtubules into inverted tubulin tubules triggered by a tubulin conformation switch. Nat Mater. 2014;13(2):195–203.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Papaseit C, Pochon N, Tabony J. Microtubule self-organization is gravity-dependent. Proc Natl Acad Sci U S A. 2000;97(15):8364–8.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Tabony J, Pochon N, Papaseit C. Microtubule self-organisation depends upon gravity. Adv Space Res. 2001;28(4):529–35.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Tadros TF. Basic theory of interfacial phenomena and colloid stability (Vol 1). Walter de Gruyter GmbH & Co KG. 2018.Google Scholar
  51. 51.
    Lietor-Santos JJ, Kim C, Lynch ML, Fernandez-Nieves A, Weitz DA. The role of polymer polydispersity in phase separation and gelation in colloid-polymer mixtures. Langmuir. 2010;26(5):3174–8.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Manley S, Cipelletti L, Trappe V, Bailey AE, Christianson RJ, Gasser U, et al. Limits to gelation in colloidal aggregation. Phys Rev Lett. 2004;93(10):108302.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Sabin J, Bailey AE, Espinosa G, Frisken BJ. Crystal-arrested phase separation. Phys Rev Lett. 2012;109(19):195701.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Cheng Z, Chaikin PM, Russel WB, Meyer WV, Rogers RB, Ottewill RH. Phase diagram of hard spheres. Mater Des. 2001;22(7):529–34.CrossRefGoogle Scholar
  55. 55.
    Potenza MA, Manca A, Veen SJ, Weber B, Mazzoni S, Schall P, et al. Dynamics of colloidal aggregation in microgravity by critical Casimir forces. EPL (Europhysics Lett). 2014;106(6):68005.CrossRefGoogle Scholar
  56. 56.
    Veen SJ, Antoniuk O, Weber B, Potenza MA, Mazzoni S, Schall P, et al. Colloidal aggregation in microgravity by critical Casimir forces. Phys Rev Lett. 2012;109(24):248302.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Amselem S, Friedman D. Submicron emulsions as drug carriers for topical administration. In: Benita S, editor. Submicron emulsions in drug targeting and delivery. CRC Press; 1998. p. 153–73.Google Scholar
  58. 58.
    Antoni M, Krägel J, Liggieri L, Miller R, Sanfeld A, Sylvain JD. Binary emulsion investigation by optical tomographic microscopy for FASES experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007;309(1–3):280–5.CrossRefGoogle Scholar
  59. 59.
    Berg C, Dreyer M, Rath HJ. Drop deformation in uniaxial extensional flow fields in microgravity. Industrial chemistry-plant equipment-process engineering-biotechnology. Chem Eng Technol. 1999;22(2):123–6.CrossRefGoogle Scholar
  60. 60.
    Liggieri L, Ferrari M, Passerone A, Ravera F, Loglio G, Pandolfini P, Steinchen A, Antoni M, Sanfeld A, Miller R, Fainerman VB. Microgravity as a tool for studies on emulsion stability. ESA Special Publication. 2005;1290:150–67.Google Scholar
  61. 61.
    Passerone A. Twenty years of surface tension measurements in space. Microgravity Sci Technol. 2011;23(2):101–111.CrossRefGoogle Scholar
  62. 62.
    National Aeronautics and Space Administration. Microencapsulation electrostatic processing system. Availble from Accessed 29 Aug 2019.
  63. 63.
    Williamson SE. ISS U.S. National Laboratory. Examining Nanoparticle Formation in Microgravity for Improved Therapeutic Cancer Vaccines. Availble from Published June 5 2019. Accessed 29 Aug 2019.
  64. 64.
    Jin K, Simpkins JW, Ji X, Leis M, Stambler I. The critical need to promote research of aging and aging-related diseases to improve health and longevity of the elderly population. Aging Dis. 2015;6(1):1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Austad SN. Small nonhuman Primates as potential models of human aging. ILAR J. 1997;38(3):142–7.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Japan Aerospace Exploration Agency. The foremost of space science/2013/space and aging. Available from Accessed 28 Aug 2019.
  67. 67.
    Carlson BM. Factors influencing the repair and adaptation of muscles in aged individuals: satellite cells and innervation. J Gerontol A Biol Sci Med Sci. 1995;50 Spec No:96–100.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Narici MV, de Boer MD. Disuse of the musculo-skeletal system in space and on earth. Eur J Appl Physiol. 2011;111(3):403–20.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Hauschild S, Tauber S, Lauber BA, Thiel CS, Layer LE, Ullrich O. Cellular effects of altered gravity on the human adaptive immune system. In: The immune system in space: are we prepared?. Cham: Springer; 2016. p. 47–75.Google Scholar
  70. 70.
    Mann V, Okoro E, Sodipe A, Williams C, Ngantcha P, Sundaresan A. Lymphocyte signaling and function in altered physiological environments. IntechOpen. 2018. Dec 17. Lymphocytes IntechOpen.Google Scholar
  71. 71.
    Sonnenfeld G, Shearer WT. Immune function during space flight. Nutrition. 2002;18(10):899–903.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science. 2019;364(6436).Google Scholar
  73. 73.
    Macho L, Kvetnansky R, Fickova M, Popova IA, Grigoriev A. Effects of exposure to space flight on endocrine regulations in experimental animals. Endocr Regul. 2001;35(2):101–14.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Christensen NJ, Drummer C, Norsk P. Renal and sympathoadrenal responses in space. Am J Kidney Dis. 2001;38(3):679–83.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wolf OT, Convit A, de Leon MJ, Caraos C, Qadri SF. Basal hypothalamo-pituitary-adrenal axis activity and corticotropin feedback in young and older men: relationships to magnetic resonance imaging-derived hippocampus and cingulate gyrus volumes. Neuroendocrinology. 2002;75(4):241–9.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Strollo F, Riondino G, Harris B, Strollo G, Casarosa E, Mangrossa N, et al. The effect of microgravity on testicular androgen secretion. Aviat Space Environ Med. 1998;69(2):133–6.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Falahati-Nini A, Riggs BL, Atkinson EJ, O’Fallon WM, Eastell R, Khosla S. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest. 2000;106(12):1553–60.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Strollo F. Hormonal changes in humans during spaceflight. Advances in space biology and medicine 7. Elsevier; 1999. p. 99–129.Google Scholar
  79. 79.
    Hughson RL, Robertson AD, Arbeille P, Shoemaker JK, Rush JW, Fraser KS, et al. Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. Am J Physiol Heart Circ Physiol. 2016;310(5):H628–38.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Stein TP, Schluter MD, Moldawer LL. Endocrine relationships during human spaceflight. Am J Phys. 1999;276(1 Pt 1):E155–62.Google Scholar
  81. 81.
    National Aeronautics and Space Administration. Health & medicine: NASA spinoff: rodent research contributes to osteoporosis treatments. Available from 2016. Accessed 29 Aug 2019.
  82. 82.
    Zaheer S, LeBoff M, Lewiecki EM. Denosumab for the treatment of osteoporosis. Expert Opin Drug Metab Toxicol. 2015;11(3):461–70.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Lee JK, Koppelmans V, Riascos RF, Hasan KM, Pasternak O, Mulavara AP, Bloomberg JJ, Seidler RD. Spaceflight-associated brain white matter microstructural changes and intracranial fluid redistribution. JAMA Neurol. 2019;76(4):412–419.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    National Aeronautics and Space Administration. Characterization of amyloid formation under microgravity environment: toward understanding the mechanisms of neurodegenerative diseases. Available from Accessed 28 Aug 2019.
  85. 85.
    Figliozzi GM. National Aeronautics and Space Administration. For an immune cell, microgravity mimics aging. Avilable from Updated August 7 2017. Accessed 29 Aug 2019.
  86. 86.
    Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32(8):760–72.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Bhusnure OG, Satpute V, Gholve SB, Giram PS, Jagtap S, Chakure SS. Organs-on-a-chip: a new tool for drug discovery. Int J ChemTech Res. 2017;10(9):35–49.Google Scholar
  88. 88.
    Esch EW, Bahinski A, Huh D. Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov. 2015;14(4):248–60.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    U.S. Department of Health & Human Services National Institutes of Health. Tissue chips in space. Available from Updated August 19 2019. Accessed 29 Aug 2019.
  90. 90.
    Comet B. Limiting factors for human health and performance: microgravity and reduced gravity. In: Study on the survivability and adaptation of humans to long-duration interplanetary and planetary environments; Technical Note 2: Critical assessments of the limiting factors for human health and performance and recommendation of counter measures, HUMEX-TN-002. 2001.Google Scholar
  91. 91.
    Gershovich PM, Gershovich YG, Buravkova LB. Molecular genetic features of human mesenchymal stem cells after their osteogenic differentiation under the conditions of microgravity. Hum Physiol. 2013;39(5):540–4.CrossRefGoogle Scholar
  92. 92.
    Corydon TJ, Mann V, Slumstrup L, Kopp S, Sahana J, Askou AL, et al. Reduced expression of cytoskeletal and extracellular matrix genes in human adult retinal pigment epithelium cells exposed to simulated microgravity. Cell Physiol Biochem. 2016;40(1–2):1–17.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Thiel CS, Hauschild S, Huge A, Tauber S, Lauber BA, Polzer J, et al. Dynamic gene expression response to altered gravity in human T cells. Sci Rep. 2017;7(1):5204.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Hammond TG, Lewis FC, Goodwin TJ, Linnehan RM, Wolf DA, Hire KP, et al. Gene expression in space. Nat Med. 1999;5(4):359.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Lewis ML, Cubano LA, Zhao B, Dinh HK, Pabalan JG, Piepmeier EH, et al. cDNA microarray reveals altered cytoskeletal gene expression in space-flown leukemic T lymphocytes (Jurkat). FASEB J. 2001;15(10):1783–5.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Cerwinka WH, Sharp SM, Boyan BD, Zhau HE, Chung LW, Yates C. Differentiation of human mesenchymal stem cell spheroids under microgravity conditions. Cell Regen. 2012;1(1):2.CrossRefGoogle Scholar
  97. 97.
    Kunz H, Quiriarte H, Simpson RJ, Ploutz-Snyder R, McMonigal K, Sams C, Crucian B. Alterations in hematologic indices during long-duration spaceflight. BMC Hematol. 2017;17:12.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Davis TA, Wiesmann W, Kidwell W, Cannon T, Kerns L, Serke C, et al. Effect of spaceflight on human stem cell hematopoiesis: suppression of erythropoiesis and myelopoiesis. J Leukoc Biol. 1996;60(1):69–76.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Costantini D, Overi D, Casadei L, Cardinale V, Nevi L, Carpino G, et al. Simulated microgravity promotes the formation of tridimensional cultures and stimulates pluripotency and a glycolytic metabolism in human hepatic and biliary tree stem/progenitor cells. Sci Rep. 2019;9(1):5559.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Yuge L, Kajiume T, Tahara H, Kawahara Y, Umeda C, Yoshimoto R, et al. Microgravity potentiates stem cell proliferation while sustaining the capability of differentiation. Stem Cells Dev. 2006;15(6):921–9.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Lei X, Cao Y, Zhang Y, Qian J, Zhao Q, Liu F, et al. Effect of microgravity on proliferation and differentiation of embryonic stem cells in an automated culturing system during the TZ-1 space mission. Cell Prolif. 2018;51(5):e12466.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Wilson JW, Ott CM, Honer zu Bentrup K, Ramamurthy R, Quick L, Porwollik S, et al. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci U S A. 2007;104(41):16299–304.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Hammond TG, Stodieck L, Birdsall HH, Becker JL, Koenig P, Hammond JS, et al. Effects of microgravity on the virulence of Listeria monocytogenes, Enterococcus Faecalis, Candida albicans, and methicillin-resistant Staphylococcus aureus. Astrobiology. 2013;13(11):1081–90.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Higginson EE, Galen JE, Levine MM, Tennant SM. Microgravity as a biological tool to examine host-pathogen interactions and to guide development of therapeutics and preventatives that target pathogenic bacteria. Pathog Dis. 2016;74(8).PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Klaus DM, Howard HN. Antibiotic efficacy and microbial virulence during space flight. Trends Biotechnol. 2006;24(3):131–6.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Nickerson CA, Ott CM, Mister SJ, Morrow BJ, Burns-Keliher L, Pierson DL. Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect Immun. 2000;68(6):3147–52.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, Pierson DL. Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev. 2004;68(2):345–61.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Horneck G, Klaus DM, Mancinelli RL. Space microbiology. Microbiol Mol Biol Rev. 2010;74(1):121–56.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Dornmayr-Pfaffenhuemer M, Legat A, Schwimbersky K, Fendrihan S, Stan-Lotter H. Responses of haloarchaea to simulated microgravity. Astrobiology. 2011;11(3):199–205.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    International Space Station Plays Role in Vaccine Development; 2012 February 12, Available from: https://www.nasagov/mission_pages/station/research/benefits/vaccine_developmenthtml updated February 29 2012. Accessed 18 July 2019.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.SpacePharma R&D Israel LTDHerzliya PituachIsrael
  2. 2.SpacePharma SACourgenaySwitzerland

Personalised recommendations