Skip to main content

Advertisement

Log in

Assessing the Utility of In Vitro Screening Tools for Predicting Bio-Performance of Oral Peptide Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In this study we evaluated the utility of in-vitro screening tools for predicting the in-vivo behavior of six cyclic peptides with different solubility and permeability properties (BCS class II and III), intended for oral delivery in presence of permeation enhancer Labrasol.

Methods

An in vitro flux assay was used to assess peptide permeation across a biomimetic, lipid-based membrane and in vivo studies in rats were used to determine oral peptide bioavailability in the presence of Labrasol.

Results

The in vitro flux was significantly increased for BCS class III peptides, while it significantly decreased or remained unchanged for BCS class II peptides with increasing Labrasol concentrations. The different flux responses were attributed to the combination of reduced effective free peptide concentration and increased membrane permeability in the presence of Labrasol. In vivo studies in male Wistar-Hans rats indicated improved oral bioavailability at different extents for all peptides in presence of Labrasol. On comparing the in vitro and in vivo data, a potential direct correlation for BCS class III peptides was seen but not for BCS class II peptides, due to lower free concentrations of peptides in this class.

Conclusion

This study assessed the utility of in vitro screening tools for selecting peptides and permeation excipients early in drug product development.

Graphical Abstract Graphical Abstract and Figure 1 contains small text.Graphical Abstract text is made larger. The Figure 1 text cannot be made larger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AUC:

Area under the Curve

BCS:

Biopharmaceutics Classification System

COSY:

Correlation spectroscopy

Da:

Daltons

EDTA:

Ethylenediaminetetraacetic acid

HMBC:

Heteronuclear Multiple Bond Correlation

HSQC:

Heteronuclear Single Quantum Coherence/Correlation Spectroscopy

ID:

Intra-duodenal

IV:

Intra-venous

NMR:

Nuclear Magnetic Resonance

NOESY:

Nuclear Overhauser Enhancement Spectroscopy

PAMPA:

Parallel Artificial Membrane Permeability Assay

PBS:

Phosphate Buffered Saline

References

  1. David JC, David PF, Spiros L, David P. The future of peptide-based drugs. Chem Biol Drug Des. 2013;81(1):136–47.

    Article  CAS  Google Scholar 

  2. Bak A, Leung D, Barrett SE, Forster S, Minnihan EC, Leithead AW, et al. Physicochemical and formulation Developability assessment for therapeutic peptide delivery-a primer. AAPS J. 2015;17(1):144–55.

    Article  CAS  PubMed  Google Scholar 

  3. Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv. 2013;4(11):1443–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Antosova Z, Mackova M, Kral V, Macek T. Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol. 2009;27(11):628–35.

    Article  CAS  PubMed  Google Scholar 

  5. Morten Asser K, Bente Juul R, Nozer M, William S, Ehud A, Claus C, et al. Lessons learned from the clinical development of oral peptides. Br J Clin Pharmacol. 2015;79(5):720–32.

    Article  CAS  Google Scholar 

  6. Varamini P, Toth I. Recent advances in oral delivery of peptide hormones. Expert Opin Drug Del. 2016;13(4):507–22.

    Article  CAS  Google Scholar 

  7. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1):3–25.

    Article  CAS  Google Scholar 

  8. Andrew TB, Cayla MM, Lokey RS. Form and function in cyclic peptide natural products: a pharmacokinetic perspective. Curr Top Med Chem. 2013;13(7):821–36.

    Article  Google Scholar 

  9. Wang J, Yadav V, Smart AL, Tajiri S, Basit AW. Toward Oral delivery of biopharmaceuticals: an assessment of the gastrointestinal stability of 17 peptide drugs. Mol Pharm. 2015;12(3):966–73.

    Article  CAS  PubMed  Google Scholar 

  10. Nielsen DS, Shepherd NE, Xu W, Lucke AJ, Stoermer MJ, Fairlie DP. Orally absorbed cyclic peptides. Chem Rev. 2017;117(12):8094–128.

    Article  CAS  PubMed  Google Scholar 

  11. Pye CR, Hewitt WM, Schwochert J, Haddad TD, Townsend CE, Etienne L, et al. Nonclassical size dependence of permeation defines bounds for passive adsorption of large drug molecules. J Med Chem. 2017;60(5):1665–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. David JB, Randall JM. Oral peptide delivery: prioritizing the leading technologies. Ther Deliv. 2011;2(12):1567–73.

    Article  CAS  Google Scholar 

  13. Foger F, Kopf A, Loretz B, Albrecht K. A. B-S. correlation of in vitro and in vivo models for the oral absorption of peptide drugs. Amino Acids. 2008;35(1):233–41.

    Article  CAS  PubMed  Google Scholar 

  14. Ahlbach CL, Lexa KW, Bockus AT, Chen V, Crews P, Jacobson MP, et al. Beyond cyclosporine a: conformation-dependent passive membrane permeabilities of cyclic peptide natural products. Future Med Chem. 2015;7(16):2121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev. 2016;106:256–76.

    Article  CAS  PubMed  Google Scholar 

  16. Borbas E, Balogh A, Bocz K, Muller J, Kiserdei E, Vigh T, et al. In vitro dissolution-permeation evaluation of an electrospun cyclodextrin-based formulation of aripiprazole using muFlux. Int J Pharm. 2015;491(1–2):180–9.

    Article  CAS  PubMed  Google Scholar 

  17. Borbás E, Sinkó B, Tsinman O, Tsinman K, Kiserdei É, Démuth B, et al. Investigation and mathematical description of the real driving force of passive transport of drug molecules from supersaturated solutions. Mol Pharm. 2016;13(11):3816–26.

    Article  PubMed  CAS  Google Scholar 

  18. Jerschow A, Müller N. Suppression of convection artifacts in stimulated-Echo diffusion experiments. Double-stimulated-Echo experiments. J Magn Reson. 1997;125(2):372–5.

    Article  CAS  Google Scholar 

  19. H. Wu D, D. Chen A, Johnson C. An Improved Diffusion-Ordered Spectroscopy Experiment Incorporating Bipolar-Gradient Pulses. J Magn Reson Ser A. 1995:260–264.

    Article  CAS  Google Scholar 

  20. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  CAS  PubMed  Google Scholar 

  21. Karataş A, Yüksel N, Baykara T. Improved solubility and dissolution rate of piroxicam using gelucire 44/14 and labrasol. Farmaco. 2005;60(9):777–82.

    Article  PubMed  CAS  Google Scholar 

  22. Khames A. Investigation of the effect of solubility increase at the main absorption site on bioavailability of BCS class II drug (risperidone) using liquisolid technique. Drug Deliv. 2017;24(1):328–38.

    Article  CAS  PubMed  Google Scholar 

  23. Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev. 2016;106(Pt B:277–319.

    Article  CAS  PubMed  Google Scholar 

  24. Shen Y, Lu Y, Jv M, Hu J, Li Q, Tu J. Enhancing effect of Labrasol on the intestinal absorption of ganciclovir in rats. Drug Dev Ind Pharm. 2011;37(12):1415–21.

    Article  CAS  PubMed  Google Scholar 

  25. Tsinman K, Tsinman O, Lingamaneni R, Zhu S, Riebesehl B, Grandeury A, et al. Ranking Itraconazole formulations based on the flux through artificial lipophilic membrane. Pharm Res. 2018;35(8):161.

    Article  PubMed  CAS  Google Scholar 

  26. Gao Y, Carr RA, Spence JK, Wang WW, Turner TM, Lipari JM, et al. A pH-dilution method for estimation of biorelevant drug solubility along the gastrointestinal tract: application to physiologically based pharmacokinetic modeling. Mol Pharm. 2010;7(5):1516–26.

    Article  CAS  PubMed  Google Scholar 

  27. Fernandez S, Chevrier S, Ritter N, Mahler B, Demarne F, Carrière F, et al. In vitro gastrointestinal lipolysis of four formulations of Piroxicam and Cinnarizine with the self emulsifying excipients Labrasol and Gelucire 44/14. Pharm Res. 2009;26(8):1901–10.

    Article  CAS  PubMed  Google Scholar 

  28. Dahan A, Beig A, Lindley D, Miller JM. The solubility-permeability interplay and oral drug formulation design: two heads are better than one. Adv Drug Deliv Rev. 2016;101:99–107.

    Article  CAS  PubMed  Google Scholar 

  29. Gerhard L, Karen EM, Richard HR. Effect of complex formation on drug absorption III: concentration and drug dependent effect of a nonionic surfactant. J Pharm Sci. 1966;55(4):394–8.

    Article  Google Scholar 

  30. Amidon GE, Higuchi WI, Ho NFH. Theoretical and experimental studies of transport of micelle-solubilized solutes. J Pharm Sci. 1982;71(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  31. Arellano A, Santoyo S, Martn C, Ygartua P. Surfactant effects on the in vitro percutaneous absorption of diclofenac sodium. Eur J Drug Metal Pharmacokinet. 1998;23(2):307–12.

    Article  CAS  Google Scholar 

  32. Miller JM, Beig A, Krieg BJ, Carr RA, Borchardt TB, Amidon GE, et al. The solubility-permeability interplay: mechanistic modeling and predictive application of the impact of micellar Solubilization on intestinal permeation. Mol Pharm. 2011;8(5):1848–56.

    Article  CAS  PubMed  Google Scholar 

  33. Rosen MJ, Kunjappu JT. Solubilization by solutions of surfactants:micellar catalysis. In. Surfactants and interfacial phenomena. Wiley: Hoboken; 2012. p. 202–34.

    Book  Google Scholar 

  34. Koga K, Kusawake Y, Ito Y, Sugioka N, Shibata N, Takada K. Enhancing mechanism of Labrasol on intestinal membrane permeability of the hydrophilic drug gentamicin sulfate. Eur J Pharm Biopharm. 2006;64(1):82–91.

    Article  CAS  PubMed  Google Scholar 

  35. Assmus F, Ross A, Fischer H, Seelig J, Seelig A. 31P and 1H NMR studies of the molecular Organization of Lipids in the parallel artificial membrane permeability assay. Mol Pharm. 2017;14(1):284–95.

    Article  CAS  PubMed  Google Scholar 

  36. Paternostre MT, Roux M, Rigaud JL. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by triton X-100, octyl glucoside, and sodium cholate. Biochemistry. 1988;27(8):2668–77.

    Article  CAS  PubMed  Google Scholar 

  37. Maria-Angeles U, Felix MG, Alicia A. Structural changes induced by triton X-100 on sonicated phosphatidylcholine liposomes. Eur J Biochem. 1988;173(3):585–8.

    Article  Google Scholar 

  38. Lichtenberg D, Ahyayauch H, Alonso A, Goñi F. Detergent solubilization of lipid bilayers: a balance of driving forces. Trends Biochem Sci. 2013;38(2):85–93.

    Article  CAS  PubMed  Google Scholar 

  39. Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta Biomembr. 2004;1666(1):105–17.

    Article  CAS  Google Scholar 

  40. Tsinman K, Tsinman O. Novel HT method for parallel excipient/vehicle formulation studies. In.AAPS. 2013:2013.

  41. Katneni K, Charman SA, Porter CJH. Permeability assessment of poorly water-soluble compounds under solubilizing conditions: the reciprocal permeability approach. J Pharm Sci. 2006;95(10):2170–85.

    Article  CAS  PubMed  Google Scholar 

  42. Buckley ST, Frank KJ, Fricker G, Brandl M. Biopharmaceutical classification of poorly soluble drugs with respect to "enabling formulations". Eur J Pharm Sci. 2013;50(1):8–16.

    Article  CAS  PubMed  Google Scholar 

  43. Sha X, Yan G, Wu Y, Li J, Fang X. Effect of self-microemulsifying drug delivery systems containing Labrasol on tight junctions in Caco-2 cells. Eur J Pharm Sci. 2005;24(5):477–86.

    Article  CAS  PubMed  Google Scholar 

  44. Chiu Y-Y, Higaki K, Neudeck BL, Barnett JL, Welage LS, Amidon GL. Human Jejunal permeability of Cyclosporin a: influence of surfactants on P-glycoprotein efflux in Caco-2 cells. In. 2003:749–56.

  45. Kino K, Taguchi Y, Yamada K, Komano T, Ueda K. Aureobasidin a, an antifungal cyclic depsipeptide antibiotic, is a substrate for both human MDR1 and MDR2/P-glycoproteins. FEBS Lett. 1996;399(1–2):29–32.

    Article  CAS  PubMed  Google Scholar 

  46. Lin Y, Shen Q, Katsumi H, Okada N, Fujita T, Jiang X, et al. Effects of Labrasol and other pharmaceutical excipients on the intestinal transport and absorption of Rhodamine123, a P-glycoprotein substrate, in rats. Biol Pharm Bull. 2007;30(7):1301–7.

    Article  CAS  PubMed  Google Scholar 

  47. Bravo González RC, Huwyler J, Walter I, Mountfield R, Bittner B. Improved oral bioavailability of cyclosporin a in male Wistar rats: comparison of a Solutol HS 15 containing self-dispersing formulation and a microsuspension. Int J Pharm. 2002;245(1):143–51.

    Article  PubMed  Google Scholar 

  48. Drewe J, Beglinger C, Kissel T. The absorption site of cyclosporin in the human gastrointestinal tract. Br J Clin Pharmacol. 1992;33(1):39–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fricker G, Drewe J, Vonderscher J, Kissel T, Beglinger C. Enteral absorption of octreotide. Br J Pharmacol. 1992;105(4):783–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Busby RW, Kessler MM, Bartolini WP, Bryant AP, Hannig G, Higgins CS, et al. Pharmacologic properties, metabolism, and disposition of Linaclotide, a novel therapeutic peptide approved for the treatment of irritable bowel syndrome with constipation and chronic idiopathic constipation. J Pharmacol Exp Ther. 2013;344(1):196–206.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This research was performed as a part of MRL Postdoctoral Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prajakta Gadgil.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A part of this work was presented as poster presentations at the 2017 Gordon Research Conference, Preclinical Form and Formulation for Drug Discovery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadgil, P., Alleyne, C., Feng, KI. et al. Assessing the Utility of In Vitro Screening Tools for Predicting Bio-Performance of Oral Peptide Delivery. Pharm Res 36, 151 (2019). https://doi.org/10.1007/s11095-019-2682-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2682-8

Key words

Navigation