Skip to main content

Advertisement

Log in

Octreotide Nanoparticles Showed Affinity for In Vivo MIA Paca-2 Inducted Pancreas Ductal Adenocarcinoma Mimicking Pancreatic Polypeptide-Secreting Tumor of the Distal Pancreas (PPoma)

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Pancreatic Polypeptide-secreting tumor of the distal pancreas (PPoma) is a rare, difficult and indolent type of cancer with a survival rate of 5-year in only 10% of all cases. The PPoma is classified as a neuroendocrine tumor (NET) not functioning that overexpresses SSTR 2 (somatostatin receptor subtype 2). Thus, in order to improve the diagnosis of this type of tumor, we developed nanoparticulate drug carriers based on poly-lactic acid (PLA) polymer loaded with octreotide and radiolabeled with Technetium-99 m (99mTc).

Methods

PLA/PVA octreotide nanoparticles were developed by double-emulsion technique. These nanoparticles were characterized by Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS) and radiolabeled with 99mTc by the direct via forming 99mTc-PLA/PVA octreotide nanoparticles. The safety of these nanosystems was evaluated by the MTT cell toxicity assay and their in vivo biodistribution was evaluated in xenografted inducted animals.

Results

The results showed that a 189 nm sized nanoparticle were formed with a PDI of 0,097, corroborating the monodispersive behavior. These nanoparticles were successfully radiolabeled with 99mTc showing uptake by the inducted tumor. The MTT assay corroborated the safety of the nanosystem for the cells.

Conclusion

The results support the use of this nanosystem (99mTc-PLA/PVA octreotide nanoparticles) as imaging agent for PPoma.

Polypeptide-Secreting Tumor of the Distal Pancreas (PPoma) Radiolabeled Nanoparticles for Imaging

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AFM:

Atomic Force Microscopy

CO2 :

Carbon Dioxide

DLS:

Dynamic Light Scattering

DMEM:

Dulbecco ModifiedEagle’sMinimalEssentialMedium

EDTA:

Ethylenediaminetetraaceticacid

EE:

Entrapment Efficiency

EPR:

Enhanced Permeability and Retention

FBS:

Fetal BovineSerum

HEPES:

N-2 Hydroxyethyl Piperazine-N′-2 Sulfonic Acid Ethane

ID/organ:

Dose per Organ

IPEN/CNEN:

Instituto de Pesquisas Energéticas e Nucleares/Comissão Nacional de Energia Nuclear_Institute of Energy and Nuclear Research/National Nuclear Energy Commission

μCi :

Microcurie

MBq:

Megabecquerel

MIA PACA-2:

Cells from human pancreas carcinoma

MPS:

Mononuclear Phagocytic System

MTT:

3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide

NaHCO3 :

Sodium Bicarbonate

NET:

Neuroendocrine Tumor

PDI:

Polydispersity Index

PLA:

Polylactic Acid

PP:

Pancreatic Polypeptide

PPoma:

Pancreatic Polypeptide-secreting tumor of the distal pancreas

PVA:

Poly(Vinyl Alcohol)

RPMI:

Roswell Park Memorial Institute

SC:

Subcutaneous

SD:

Standard Deviation

SnCl2 :

Stannous Chloride

SSTR 2:

Somatostatin Receptor Subtype 2

99mTc:

Technetium 99 metastable

UT:

Untreated cells

W/O:

Water/organic emulsion

W/O/W:

Water/organic solvent/water emulsion

References

  1. Brereton MF, Vergari E, Zhang Q, Clark A. Alpha-, Delta- and PP-cells: are they the architectural cornerstones of islet structure and co-ordination? J Histochem Cytochem. 2015;63(8):575–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vinik A, Feliberti Z, Perry RR. Pancreatic Polypeptide (ppoma). In: Feingold KR, Anawalt B, Boyce A, et al., editors. Source Endotext [Internet]. South Dartmouth: mdtext.com; 2017, Jun 12. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279067/. Accessed 18 August 2018.

  3. American Cancer Society. Cancer Facts & Figures 2019. Atlanta: American Cancer Society; 2019.

    Google Scholar 

  4. Instituto Nacional de Câncer José Alencar Gomes da Silva. Dados de incidência e mortalidade. Available from: https://www.inca.gov.br/tipos-de-cancer/cancer-de-pancreas. Accessed 4 March 2019.

  5. Jensen RT. Endocrine tumors of the gastrointestinal tract and pancreas. In: Kasper DL, Braunwald E, Fauci AS, et al., editors. Harrison's principles of internal medicine. New York: Mcgraw-Hill Medical Publishing Division; 2008. p. 2347–58.

    Google Scholar 

  6. Mullan MH, Gauger PG, Thompson NW. Endocrine tumours of the pancreas: review and recent advances. ANZ J Surg. 2001;71(8):475–82.

    Article  CAS  PubMed  Google Scholar 

  7. Oberg K, Eriksson B. Endocrine tumours of the pancreas. Best Pract Res Clin Gastroenterol. 2005;19(5):753–81.

    Article  PubMed  Google Scholar 

  8. Alexakis N, Neoptolemos JP. Pancreatic neuroendocrine tumours. Best Pract Res Clin Gastroenterol. 2008;22(1):183–205.

    Article  CAS  PubMed  Google Scholar 

  9. Maxwell JE, O’Dorisio TM, Howe JR. Biochemical diagnosis and preoperative imaging of gastroenteropancreatic neuroendocrine tumors. Surg Oncol Clin N Am. 2016;25(1):171–94.

    Article  PubMed  Google Scholar 

  10. Santos AP. Tumores neuroendócrinos: requesitos mínimos para o diagnóstico clínico. Rev Port Cir. 2011;16(2):28–34.

    Google Scholar 

  11. PRRNT. Practical guidance on peptide receptor radionuclide therapy (PRRNT) for neuendocrinetumours. Vienna: IAEA; 2013.

    Google Scholar 

  12. Ligiero Braga T, Santos-Oliveira R. Ppoma review: epidemiology, aetiopathogenesis, prognosis and treatment. Diseases. 2018;6(8):20.

    Google Scholar 

  13. Barakat MT, Meeran K, Bloom SR. Neuroendocrine tumours. Endocr Relat Cancer. 2004;11:1–18.

    Article  CAS  PubMed  Google Scholar 

  14. Metz DC, Jensen RT. Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology. 2008;135(5):1469–92.

    Article  CAS  PubMed  Google Scholar 

  15. Yao JC, Hoff PM, Hoff AO. Neuroendocrine tumors. New York: Humana Press; 2011. p. 221–43.

    Book  Google Scholar 

  16. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.

    Article  PubMed  Google Scholar 

  17. Paragliola RM, Salvatori R. Novel somatostatin receptor ligands therapies for acromegaly. Front Endocrinol (Lausanne). 2018;9(78):8.

    Google Scholar 

  18. Papanagnou P, Papadopoulos GE, Stivarou T, Pappas A. Toward fully exploiting the therapeutic potential of marketed pharmaceuticals: the use of octreotide and chloroquine in oncology. Onco Targets Ther. 2018;12:319–39.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Patricio BFC, Albernaz MS, Sarcinelli MA, Carvalho SM, Santos-Oliveira R, Weissmuller G. Development of novel nanoparticle for bone Cancer. J Biomed Nanotechnol. 2014;10(7):1242–8.

    Article  CAS  PubMed  Google Scholar 

  20. Gradiz R, Silva HC, Carvalho L, Botelho MF, Mota-Pinto A. MIA paca-2 and PANC-1 – pancreas ductal adenocarcinoma cell lines with neuroendocrine differentiation and somatostatin receptors. Sci Rep. 2016;6(21648):14.

    Google Scholar 

  21. Moatassim-Billah S, Duluc C, Samain R, Jean C, Perraud A, Decaup E, et al. Anti-metastatic potential of somatostatin analog SOM230: indirect pharmacological targeting of pancreatic cancer-associated fibroblasts. Oncotarget. 2016;7(27):41584–98.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pinto SR, Helal-Neto E, Paumgartten F, Felzenswalb I, Araujo-Lima CF, Martinez-Manez R, et al. Cytotoxicity, genotoxicity, transplacental transfer and tissue disposition in pregnant rats mediated by nanoparticles: the case of magnetic core mesoporous silica nanoparticles. Artif Cells Nanomed Biotechnol. 2018;46(sup2):527–38.

    Article  CAS  PubMed  Google Scholar 

  23. De Souza Albernaz M, Toma SH, Clanton J, Araki K, Santos-Oliveira R. Decorated superparamagnetic Iron oxide nanoparticles with monoclonal antibody and diethylene-Triamine-Pentaacetic acid labeled with Thechnetium-99m and Galium-68 for breast Cancer imaging. Pharm Res. 2018;35(1):24.

    Article  PubMed  Google Scholar 

  24. Portilho FL, Pinto SR, de Barros AODS, Helal-Neto E, Dos Santos SN, Bernardes ES, et al. In loco retention effect of magnetic core mesoporous silica nanoparticles doped with trastuzumab as intralesional nanodrug for breast cancer. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S725–33.

    Article  CAS  PubMed  Google Scholar 

  25. Sousa-Batista AJ, Cerqueira-Coutinho C, do Carmo FS, Albernaz MS, Santos-Oliveira R. Polycaprolactone antimony nanoparticles as drug delivery system for Leishmaniasis. Am J Ther. 2019;26(1):e12–7.

    Article  PubMed  Google Scholar 

  26. Rosa TG, Dos Santos SN, de Jesus Andreoli Pinto T, DDM G, Barja-Fidalgo TC, Ricci-Junior E, et al. Microradiopharmaceutical for metastatic melanoma. Pharm Res. 2017;34(12):2922–30.

    Article  CAS  PubMed  Google Scholar 

  27. Pascual L, Cerqueira-Coutinho C, García-Fernández A, de Luis B, Bernardes ES, Albernaz MS, et al. MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications. Nanomedicine. 2017;13(8):2495–505.

    Article  CAS  PubMed  Google Scholar 

  28. Ricci-Junior E, de Oliveira de Siqueira LB, RAS R, Sancenon F, Martinez-Manez R, de Moraes JA, et al. Nanocarriers as phototherapeutic drug delivery system: appraisal of three different nanosystems in an in vivo and in vitro exploratory study. Photodiagn Photodyn Ther. 2018;21:43–9.

    Article  CAS  Google Scholar 

  29. Oberg K, Kvols L, Caplin M, Delle Fave G, de Herder W, Rindj G, et al. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann Oncol. 2004;15(6):966–73.

    Article  CAS  PubMed  Google Scholar 

  30. Volante M, Brizzi MP, Faggiano A, La Rosas S, Rapa I, Ferrero A, et al. Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol. 2007;20(11):1172–82.

    Article  CAS  PubMed  Google Scholar 

  31. Ito T, Igarashi H, Jensen RT. Pancreatic neuroendocrine tumors: clinical features, diagnosis and medical treatment: advances. Best Pract Res Clin Gastroenterol. 2012;26(6):737–53.

    Article  PubMed  PubMed Central  Google Scholar 

  32. de Jesus Felismino C, Helal-Neto E, Portilho FL, Rocha Pinto S, Sancenon F, Martinez-Manez R, et al. Effect of obesity on biodistribution of nanoparticles. J Control Release. 2018;281:11–8.

    Article  PubMed  Google Scholar 

  33. Salvi R, Cerqueira-Coutinho C, Ricci-Junior E, Dos Santos SN, Bernardes ES, Barros de Araujo PL, et al. Diagnosing lung cancer using etoposide microparticles labeled with 99mtc. Artif Cells Nanomed Biotechnol. 2018;46(2):341–5.

    Article  CAS  PubMed  Google Scholar 

  34. Benna-Zayani M, Kbir-Ariguib N, Trabelsi-Ayadi M, Grossiord L. Stabilisation of W/O/W double emulsion by polysaccharides as weak gels. Colloids Surf A Physicochem Eng Asp. 2008;316(1–3):46–54.

    Article  CAS  Google Scholar 

  35. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1–2):113–42.

    Article  CAS  PubMed  Google Scholar 

  36. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(57):17.

    Google Scholar 

  37. Schaffazick SR, Guterres SS. Caracterização e estabilidade físico-química de sistemas poliméricosnanoparticulados para administração de fármacos. Quim Nova. 2003;26(5):726–37.

    Article  CAS  Google Scholar 

  38. Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  39. Alexis F, Rhee JW, Richie JP, Radovic-Moreno AF, Langer R, Farokhzad OC. New frontiers in nanotechnology for cancer treatment. Urol Oncol. 2008;26(1):74–85.

    Article  CAS  PubMed  Google Scholar 

  40. Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14(5):1310–6.

    Article  CAS  PubMed  Google Scholar 

  41. Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev. 2011;63(3):170–83.

    Article  CAS  PubMed  Google Scholar 

  42. Oliveira LC, Taveira EJF, Souza LG, Marreto RN, Lima EM, Taveira SF. Aplicações das Nanopartículas Lipídicas no Tratamento de Tumores Sólidos: Revisão de Literatura. Rev Bras Cancerol. 2012;58(4):695–701.

    Google Scholar 

  43. Sadat Tabatabaei Mirakabad F, Nejati-Koshki K, Akbarzadeh A, Yamchi MR, Milanj M, Zarghami N, et al. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev. 2014;15(2):517–35.

    Article  PubMed  Google Scholar 

  44. Liechty WB, Peppas NA. Expert opinion: responsive polymer nanoparticles in Cancer therapy. Eur J Pharm Biopharm. 2012;80(2):241–6.

    Article  CAS  PubMed  Google Scholar 

  45. SAHA GB. Fundamentals of nuclear pharmacy. New York: Springer Verlag; 2018.

    Book  Google Scholar 

  46. Guimarães TT, Bordim A, Albernaz MS, Santos-Oliveira R. Quality control of radiopharmaceutical 99mtc-MAG3. Lat Am J Pharm. 2011;30(7):1437–9.

    Google Scholar 

  47. Almeida RS, Guimaraes TT, Albernaz MS, Bordim A, Ferro JP, Mamede M, et al. Can quality control of radiopharmaceuticals be done using water and ethanol? Adv Sci Lett. 2012;10(1):140–2.

    Article  CAS  Google Scholar 

  48. Alvarez-Lorenzo C, Concheiro A. Smart materials for drug delivery. United Kingdom: Royal Society of Chemistry; 2013.

    Book  Google Scholar 

  49. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10(4):487–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (London). 2016;11(6):673–92.

    Article  CAS  Google Scholar 

  52. Li M, Li W, Kim HJ, Yao Q, Chen C, Fisher WE. Characterization of somatostatin receptor expression in human pancreatic cancer using real-time RT-PCR. J Surg Res. 2004;119(2):130–7.

    Article  CAS  PubMed  Google Scholar 

  53. Longmire M, Choyke PL, Kobayashi H. Clearance properties of Nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (London). 2008;3(5):703–17.

    Article  CAS  Google Scholar 

  54. Pinto SR, Sarcinelle MA, de Souza Albernaz M, da Silva FM, Seabra SH, Almeida Nascimento P, et al. In vivo studies: comparing the administration via and the impact on the biodistribution of radiopharmaceuticals. Nucl Med Biol. 2014;41(9):772–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Santos-Oliveira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, T.L., Pinto, S.R., dos Reis, S.R.R. et al. Octreotide Nanoparticles Showed Affinity for In Vivo MIA Paca-2 Inducted Pancreas Ductal Adenocarcinoma Mimicking Pancreatic Polypeptide-Secreting Tumor of the Distal Pancreas (PPoma). Pharm Res 36, 143 (2019). https://doi.org/10.1007/s11095-019-2678-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2678-4

Key words

Navigation