Changes of Blood-Brain Barrier and Brain Parenchymal Protein Expression Levels of Mice under Different Insulin-Resistance Conditions Induced by High-Fat Diet

Abstract

Purpose

The purpose of the present study was to investigate changes of blood-brain barrier (BBB) and brain parenchymal protein expression due to type II diabetes mellitus (T2DM) induced by a high-fat diet (HFD) by using SWATH-based quantitative proteomics.

Methods

Mice were fed a HFD for 2 or 10 weeks, and then SWATH-based quantitative proteomic analysis, western blot analysis, immunohistochemistry and functional transport studies were performed.

Results

In brain capillaries, expression levels of BBB transporters (Glut1, P-glycoprotein) and tight-junction proteins (claudin-5, occludin) were significantly reduced in HFD mice at 2 weeks, but recovered to the levels in the normal diet (ND) group at 10 weeks. P-glycoprotein function at the BBB was reduced at 2 weeks. In the cerebral cortex and hippocampus, neurofilament, which is important for neuronal function, was decreased in HFD mice at 2 weeks, but recovered at 10 weeks.

Conclusion

Our results suggest that changes in the status of insulin resistance influence expression of BBB transporters, which in turn may alter the expression of cognitive function-related proteins.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

Aβ:

Amyloid β peptide

AD:

Alzheimer’s disease

BBB:

Blood-brain barrier

CaMKII:

Ca2+/calmodulin-dependent protein kinase

CNS:

Central nervous system

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

Glut1:

Glucose transporter 1

hCMEC:

human cerebral vascular endothelial cell

HFD:

High-fat diet

IDA:

Information-dependent acquisition

Lat1:

Large neutral amino acids transporter small subunit 1

Lrp1:

Low density lipoprotein receptor-related protein 1

Mct1:

Monocarboxylate transporter 1

Mdr1a:

Multidrug resistance protein 1a

ND:

Normal diet

PBS:

Phosphate buffered saline

PSD:

Post synaptic density

PTS:

Phase-transfer surfactant

ROS:

Reactive oxygen species

SWATH:

Sequential window acquisition of all theoretical fragment-ion spectra

T2DM:

Type 2 diabetes mellitus

TCA:

Tricarboxylic acid

TfR:

Transferrin receptor

TNF-α:

Tumor necrosis factor-alpha

VEGF:

Vascular endothelial growth factor

References

  1. 1.

    Marin-Valencia I, Good LB, Ma Q, Duarte J, Bottiglieri T, Sinton CM, et al. Glut1 deficiency (G1D): epilepsy and metabolic dysfunction in a mouse model of the most common human phenotype. Neurobiol Dis. 2012;48(1):92–101.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD, Perlmutter D, et al. GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci. 2015;18(4):521–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Liu L, Liu XD. Alterations in function and expression of ABC transporters at blood-brain barrier under diabetes and the clinical significances. Front Pharmacol. 2014;5:273.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest. 2005;115(11):3285–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012;9(1):23.

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Hamed SA. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications. Expert Rev Clin Pharmacol. 2017;10(4):409–28.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Yang W, Shi H, Zhang J, Shen Z, Zhou G, Hu M. Effects of the duration of hyperlipidemia on cerebral lipids, vessels and neurons in rats. Lipids Health Dis. 2017;16(1):26.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD. Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia. 2007;50(1):202–11.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Ouyang S, Hsuchou H, Kastin AJ, Wang Y, Yu C, Pan W. Diet-induced obesity suppresses expression of many proteins at the blood-brain barrier. J Cereb Blood Flow Metab. 2014;34(1):43–51.

    Article  Google Scholar 

  10. 10.

    Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122(1):153–62.

    CAS  Article  Google Scholar 

  11. 11.

    Jais A, Solas M, Backes H, Chaurasia B, Kleinridders A, Theurich S, et al. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell. 2016;165(4):882–95.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Kanoski SE, Davidson TL. Different patterns of memory impairments accompany short- and longer-term maintenance on a high-energy diet. Journal of experimental psychology. Animal behavior processes. 2010;36(2):313–9.

    PubMed  Article  Google Scholar 

  13. 13.

    Parks BW, Sallam T, Mehrabian M, Psychogios N, Hui ST, Norheim F, et al. Genetic architecture of insulin resistance in the mouse. Cell Metab. 2015;21(2):334–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Uchida Y, Tachikawa M, Obuchi W, Hoshi Y, Tomioka Y, Ohtsuki S, et al. A study protocol for quantitative targeted absolute proteomics (QTAP) by LC-MS/MS: application for inter-strain differences in protein expression levels of transporters, receptors, claudin-5, and marker proteins at the blood-brain barrier in ddY, FVB, and C57BL/6J mice. Fluids Barriers CNS. 2013;10(1):21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Masuda T, Tomita M, Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res. 2008;7(2):731–40.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Uchida Y, Ohtsuki S, Kamiie J, Terasaki T. Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J Pharmacol Exp Ther. 2011;339(2):579–88.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Silva AJ, Paylor R, Wehner JM, Tonegawa S. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science (New York, N.Y.) 1992; 257(5067): 206–11.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Yamaguchi M, Kokai Y, Imai S, Utsumi K, Matsumoto K, Honda H, et al. Investigation of annexin A5 as a biomarker for Alzheimer's disease using neuronal cell culture and mouse model. J Neurosci Res. 2010;88(12):2682–92.

    CAS  PubMed  Google Scholar 

  19. 19.

    Howell MD, Bailey LA, Cozart MA, Gannon BM, Gottschall PE. Hippocampal administration of chondroitinase ABC increases plaque-adjacent synaptic marker and diminishes amyloid burden in aged APPswe/PS1dE9 mice. Acta neuropathologica communications. 2015;3:54.

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Di Domenico F, Owen JB, Sultana R, Sowell RA, Perluigi M, Cini C, et al. The wheat germ agglutinin-fractionated proteome of subjects with Alzheimer's disease and mild cognitive impairment hippocampus and inferior parietal lobule: implications for disease pathogenesis and progression. J Neurosci Res. 2010;88(16):3566–77.

    PubMed  Article  Google Scholar 

  21. 21.

    Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM, et al. Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer's disease. Neurobiol Dis. 2008;30(1):107–20.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Cornford EM, Young D, Paxton JW, Hyman S, Farrell CL, Elliott RB. Blood-brain glucose transfer in the mouse. Neurochem Res. 1993;18(5):591–7.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Roberts EL. 2.1 The support of energy metabolism in the central nervous system with substrates other than glucose. In: Lajtha A, Gibson GE, Dienel GA (eds). Handbook of Neurochemistry and Molecular Neurobiology: Brain Energetics. Integration of Molecular and Cellular Processes. Springer US: Boston, MA, 2007, pp 137–179.

    Google Scholar 

  24. 24.

    Sadeque AJ, Wandel C, He H, Shah S, Wood AJ. Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther. 2000;68(3):231–7.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell. 1994;77(4):491–502.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Schoenfelder Y, Hiemke C, Schmitt U. Behavioural consequences of p-glycoprotein deficiency in mice, with special focus on stress-related mechanisms. J Neuroendocrinol. 2012;24(5):809–17.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Greene C, Kealy J, Humphries MM, Gong Y, Hou J, Hudson N, et al. Dose-dependent expression of claudin-5 is a modifying factor in schizophrenia. Mol Psychiatry. 2017.

  28. 28.

    Ito S, Yanai M, Yamaguchi S, Couraud PO, Ohtsuki S. Regulation of tight-junction integrity by insulin in an in vitro model of human blood-brain barrier. J Pharm Sci. 2017;106(9):2599–605.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Liem RK, Messing A. Dysfunctions of neuronal and glial intermediate filaments in disease. J Clin Invest. 2009;119(7):1814–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Arnold SE, Lucki I, Brookshire BR, Carlson GC, Browne CA, Kazi H, et al. High fat diet produces brain insulin resistance, synaptodendritic abnormalities and altered behavior in mice. Neurobiol Dis. 2014;67:79–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Pierre K, Parent A, Jayet PY, Halestrap AP, Scherrer U, Pellerin L. Enhanced expression of three monocarboxylate transporter isoforms in the brain of obese mice. J Physiol. 2007;583(Pt 2):469–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Min SH, Oh TJ, Baek SI, Lee DH, Kim KM, Moon JH, et al. Degree of ketonaemia and its association with insulin resistance after dapagliflozin treatment in type 2 diabetes. Diabetes Metab. 2018;44(1):73–6.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Krishna S, Lin Z, de La Serre CB, Wagner JJ, Harn DH, Pepples LM, et al. Time-dependent behavioral, neurochemical, and metabolic dysregulation in female C57BL/6 mice caused by chronic high-fat diet intake. Physiol Behav. 2016;157:196–208.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Liu H, Xu X, Yang Z, Deng Y, Liu X, Xie L. Impaired function and expression of P-glycoprotein in blood-brain barrier of streptozotocin-induced diabetic rats. Brain Res. 2006;1123(1):245–52.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Tzanavari T, Giannogonas P, Karalis KP. TNF-alpha and obesity. Curr Dir Autoimmun. 2010;11:145–56.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Spagnuolo MS, Mollica MP, Maresca B, Cavaliere G, Cefaliello C, Trinchese G, et al. High fat diet and inflammation - modulation of Haptoglobin level in rat brain. Front Cell Neurosci. 2015;9:479.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Bauer B, Hartz AM, Miller DS. Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood-brain barrier. Mol Pharmacol. 2007;71(3):667–75.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Jain SS, Paglialunga S, Vigna C, Ludzki A, Herbst EA, Lally JS, et al. High-fat diet-induced mitochondrial biogenesis is regulated by mitochondrial-derived reactive oxygen species activation of CaMKII. Diabetes. 2014;63(6):1907–13.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Maraldi T, Rugolo M, Fiorentini D, Landi L, Hakim G. Glucose transport activation in human hematopoietic cells M07e is modulated by cytosolic calcium and calmodulin. Cell Calcium. 2006;40(4):373–81.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments and Disclosures

We are grateful for partial financial support in the form of three Grants-in-Aid for Scientific Research from the Japanese Society for the Promotion of Science (JSPS) and a Grant-in-Aid for Scientific Research on Innovative Areas (15H01562), as well as a grant from the Mochida Memorial Foundation for Medical and Pharmaceutical Research. Ohtsuki S is a full professor at Kumamoto University and is also a director of Proteomedix Frontiers. This study was not supported by the company, and his position at the company did not influence the design of the study, the collection of the data, the analysis or interpretation of the data, the decision to submit the manuscript for publication, or the writing of the manuscript, and did not present any financial conflicts. The other authors declare no competing interests.

Author information

Affiliations

Authors

Contributions

All authors, Ogata S, Ito S, Masuda T and Ohtsuki S, contributed to study design and manuscript revision. Ogata S conducted experiments and performed data analysis. Ogata S, Ito S. and Ohtsuki S wrote the manuscript. All authors provided final approval of the submitted manuscript.

Corresponding author

Correspondence to Sumio Ohtsuki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.18 mb)

Table S4

Identified proteins in brain capillary fraction of mice fed with HFD for 2 weeks (A) or 10 weeks (B) by SWATH-MS. (XLSX 275 kb)

Table S5

Identified proteins in cerebral cortex cytosol (A, C) or plasma membrane (B, D) fraction of mice fed with HFD for 2 weeks (A, B) or 10 weeks (C, D) by SWATH-MS. (XLSX 980 kb)

Table S6

Identified proteins in hippocampus cytosol (A, C) or plasma membrane (B, D) fraction of mice fed with HFD for 2 weeks (A, B) or 10 weeks (C, D) by SWATH-MS. (XLSX 936 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ogata, S., Ito, S., Masuda, T. et al. Changes of Blood-Brain Barrier and Brain Parenchymal Protein Expression Levels of Mice under Different Insulin-Resistance Conditions Induced by High-Fat Diet. Pharm Res 36, 141 (2019). https://doi.org/10.1007/s11095-019-2674-8

Download citation

Key Words

  • Blood-brain barrier
  • central nervous system
  • insulin resistance
  • quantitative proteomics
  • type II diabetes mellitus