Skip to main content
Log in

A Proof of Concept for 3D Printing of Solid Lipid-Based Formulations of Poorly Water-Soluble Drugs to Control Formulation Dispersion Kinetics

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The use of three-dimensional printing (3DP) in the development of pharmaceutical dosage forms is growing rapidly. However, the research is almost exclusively focussed on polymer-based systems with very little reported on 3D printing of lipid-based formulations. Thus, the aim of the work was to explore the feasibility of 3DP technology to prepare solid lipid-based formulations. Here, 3DP was applied for the preparation of solid self-microemulsifying drug delivery systems (S-SMEDDS) with defined surface area to volume (SA/V) ratios.

Methods

The S-SMEDDS formulations, comprised of Gelucire® 44/14, Gelucire® 48/16 and Kolliphor® P 188 were loaded with fenofibrate or cinnarizine as model drugs. The formulations were printed into four geometrical shapes - cylindrical, prism, cube and torus, and compared to a control cube manually prepared from bulk formulation.

Results

The printing process was not significantly affected by the presence of the model drugs. The as-printed S-SMEDDS formulations were characterised using differential scanning calorimetry and wide-angle X-ray scattering. The kinetics of dispersion depended on the SA/V ratio values. The digestion process was affected by the initial geometry of the dosage form by virtue of the kinetics of dispersion of the dosage forms into the digestion medium.

Conclusions

This proof of concept study has demonstrated the potential of 3DP for the development of customised S-SMEDDS formulations without the need for an additional carrier or additive and with optimisation could elaborate a new class of dosage forms based on 3D printed lipids.

Lipid based formulations were 3D printed in various shapes to control the surface are to volume ratio and consequently the kinetics of dispersion

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231–48.

    Article  CAS  PubMed  Google Scholar 

  2. Vithani K, Hawley A, Jannin V, Pouton C, Boyd BJ. Inclusion of digestible surfactants in solid SMEDDS formulation removes lag time and influences the formation of structured particles during digestion. AAPS J. 2017:1–11.

  3. Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur J Pharm Sci. 2000;11(Supplement 2):S93–8.

    Article  CAS  PubMed  Google Scholar 

  4. Oh DH, Kang JH, Kim DW, Lee B-J, Kim JO, Yong CS, et al. Comparison of solid self-microemulsifying drug delivery system (solid SMEDDS) prepared with hydrophilic and hydrophobic solid carrier. Int J Pharm. 2011;420(2):412–8.

    Article  CAS  PubMed  Google Scholar 

  5. Kang BK, Lee JS, Chon SK, Jeong SY, Yuk SH, Khang G, et al. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int J Pharm. 2004;274(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  6. Holm R, Porter CJ, Edwards GA, Müllertz A, Kristensen HG, Charman WN. Examination of oral absorption and lymphatic transport of halofantrine in a triple-cannulated canine model after administration in self-microemulsifying drug delivery systems (SMEDDS) containing structured triglycerides. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2003;20(1):91–7.

    Article  CAS  Google Scholar 

  7. Jannin V, Chambin O. Self emulsifying drug delivery systems. STP Pharma Techniques Pratiques Reglementations. 2005;15(3):247–54.

    CAS  Google Scholar 

  8. Meghani Nilesh SD. Self micro-emulsifying drug delivery system (SMEDDS): a promising tool to improve bioavailability. Journal of Pharmacy and Phytotherapeutics. 2013;2(1):17–21.

    Google Scholar 

  9. Fernandez S, Jannin V, Rodier J-D, Ritter N, Mahler B, Carrière F. Comparative study on digestive lipase activities on the self emulsifying excipient Labrasol®, medium chain glycerides and PEG esters. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2007;1771(5):633–40.

    CAS  Google Scholar 

  10. Gurram AK, Deshpande PB, Kar SS, Nayak UY, Udupa N, Reddy MS. Role of components in the formation of self-microemulsifying drug delivery systems. Indian J Pharm Sci. 2015;77(3):249–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pouton CW. Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev. 1997;25(1):47–58.

    Article  CAS  Google Scholar 

  12. Vithani K, Hawley A, Jannin V, Pouton C, Boyd BJ. Solubilisation behaviour of poorly water-soluble drugs during digestion of solid SMEDDS. Eur J Pharm Biopharm. 2018;130:236–46.

    Article  CAS  PubMed  Google Scholar 

  13. Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems – an overview. Acta Pharm Sin B. 2013;3(6):361–72.

    Article  Google Scholar 

  14. Nazzal S, Khan MA. Controlled release of a self-emulsifying formulation from a tablet dosage form: stability assessment and optimization of some processing parameters. Int J Pharm. 2006;315(1):110–21.

    Article  CAS  PubMed  Google Scholar 

  15. Yi T, Wan J, Xu H, Yang X. A new solid self-microemulsifying formulation prepared by spray-drying to improve the oral bioavailability of poorly water soluble drugs. Eur J Pharm Biopharm. 2008;70(2):439–44.

    Article  CAS  PubMed  Google Scholar 

  16. Passerini N, Albertini B, Perissutti B, Rodriguez L. Evaluation of melt granulation and ultrasonic spray congealing as techniques to enhance the dissolution of praziquantel. Int J Pharm. 2006;318(1):92–102.

    Article  CAS  PubMed  Google Scholar 

  17. Vilhelmsen T, Eliasen H, Schæfer T. Effect of a melt agglomeration process on agglomerates containing solid dispersions. Int J Pharm. 2005;303(1):132–42.

    Article  CAS  PubMed  Google Scholar 

  18. Thies C, Dos Santos IR, Richard J, Vandevelde V, Rolland H, Benoit JP. A supercritical fluid-based coating technology 1: process considerations. J Microencapsul. 2003;20(1):87–96.

    Article  CAS  PubMed  Google Scholar 

  19. Tuleu C, Newton M, Rose J, Euler D, Saklatvala R, Clarke A, et al. Comparative bioavailability study in dogs of a self-emulsifying formulation of progesterone presented in a pellet and liquid form compared with an aqueous suspension of progesterone. J Pharm Sci. 2004;93(6):1495–502.

    Article  CAS  PubMed  Google Scholar 

  20. Newton M, Petersson J, Podczeck F, Clarke A, Booth S. The influence of formulation variables on the properties of pellets containing a self-emulsifying mixture. J Pharm Sci. 2001;90(8):987–95.

    Article  CAS  PubMed  Google Scholar 

  21. Newton JM, Pinto MR, Podczeck F. The preparation of pellets containing a surfactant or a mixture of mono-and di-gylcerides by extrusion/spheronization. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2007;30(3):333–42.

    Article  CAS  Google Scholar 

  22. Abdalla A, Mäder K. Preparation and characterization of a self-emulsifying pellet formulation. Eur J Pharm Biopharm. 2007;66(2):220–6.

    Article  CAS  PubMed  Google Scholar 

  23. Jannin V, Musakhanian J, Marchaud D. Approaches for the development of solid and semi-solid lipid-based formulations. Adv Drug Deliv Rev. 2008;60(6):734–46.

    Article  CAS  PubMed  Google Scholar 

  24. Sudheer P, Kumar N, Puttachari S, Shankar U. Approaches to development of solid-self micron emulsifying drug delivery system: formulation techniques and dosage forms–a review. Asian Journal of Pharmacy and Life Science. 2012;2231:4423.

    Google Scholar 

  25. Porter CJH, Charman WN. In vitro assessment of oral lipid based formulations. Adv Drug Deliv Rev. 2001;50:S127–47.

    Article  CAS  PubMed  Google Scholar 

  26. Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60(6):625–37.

    Article  CAS  PubMed  Google Scholar 

  27. An J, Teoh JEM, Suntornnond R, Chua CK. Design and 3D printing of scaffolds and tissues. Engineering. 2015;1(2):261–8.

    Article  Google Scholar 

  28. Liu Z, Zhang M, Bhandari B, Wang Y. 3D printing: printing precision and application in food sector. Trends Food Sci Technol. 2017;69(Part A):83–94.

    Article  CAS  Google Scholar 

  29. Goyanes A, Martinez PR, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657–63.

    Article  CAS  PubMed  Google Scholar 

  30. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release. 2015;217:308–14.

    Article  CAS  PubMed  Google Scholar 

  31. Basit AW, Gaisford S. 3D printing of pharmaceuticals: Springer International Publishing; 2018.

  32. Norman J, Madurawe RD, Moore CMV, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39–50.

    Article  CAS  PubMed  Google Scholar 

  33. Awad A, Trenfield SJ, Gaisford S, Basit AW. 3D printed medicines: a new branch of digital healthcare. Int J Pharm. 2018;548(1):586–96.

    Article  CAS  PubMed  Google Scholar 

  34. Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018;23(8):1547–55.

    Article  CAS  PubMed  Google Scholar 

  35. Goyanes A, Scarpa M, Kamlow M, Gaisford S, Basit AW, Orlu M. Patient acceptability of 3D printed medicines. Int J Pharm. 2017;530(1–2):71–8.

    Article  CAS  PubMed  Google Scholar 

  36. Trenfield SJ, Goyanes A, Telford R, Wilsdon D, Rowland M, Gaisford S, et al. 3D printed drug products: non-destructive dose verification using a rapid point-and-shoot approach. Int J Pharm. 2018;549(1–2):283–92.

    Article  CAS  PubMed  Google Scholar 

  37. Moulton SE, Wallace GG. 3-dimensional (3D) fabricated polymer based drug delivery systems. Journal of controlled release : official journal of the Controlled Release Society. 2014;193:27–34.

    Article  CAS  Google Scholar 

  38. Alomari M, Mohamed FH, Basit AW, Gaisford S. Personalised dosing: printing a dose of one’s own medicine. Int J Pharm. 2015;494(2):568–77.

    Article  CAS  PubMed  Google Scholar 

  39. Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529(1):285–93.

    Article  CAS  PubMed  Google Scholar 

  40. Ghosh U, Ning S, Wang Y, Kong YL. Addressing unmet clinical needs with 3D printing technologies. Advanced healthcare materials. 2018:e1800417.

  41. Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci. 2018;39(5):440–51.

    Article  CAS  PubMed  Google Scholar 

  42. Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1–2):101–7.

    Article  CAS  PubMed  Google Scholar 

  43. Prasad LK, Smyth H. 3D printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42(7):1019–31.

    Article  CAS  PubMed  Google Scholar 

  44. Alhnan MA, Okwuosa TC, Sadia M, Wan K-W, Ahmed W, Arafat B. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res. 2016;33(8):1817–32.

    Article  CAS  PubMed  Google Scholar 

  45. Goyanes A, Buanz AB, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157–62.

    Article  CAS  PubMed  Google Scholar 

  46. Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm. 2015;96:380–7.

    Article  CAS  PubMed  Google Scholar 

  47. Martinez PR, Goyanes A, Basit AW, Gaisford S. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm. 2017;532(1):313–7.

    Article  CAS  PubMed  Google Scholar 

  48. Goyanes A, Buanz ABM, Basit AW, Gaisford S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm. 2014;476(1):88–92.

    Article  CAS  PubMed  Google Scholar 

  49. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm. 2015;494(2):643–50.

    Article  CAS  PubMed  Google Scholar 

  50. Beck R, Chaves P, Goyanez A, Vukosavljevic B, Buanz A, Windbergs M, et al. 3D printed tablets loaded with polymeric nanocapsules: an innovative approach to produce customized drug delivery systems. Int J Pharm. 2017;528:268–79.

    Article  CAS  PubMed  Google Scholar 

  51. Water JJ, Bohr A, Boetker J, Aho J, Sandler N, Nielsen HM, et al. Three-dimensional printing of drug-eluting implants: preparation of an antimicrobial Polylactide feedstock material. J Pharm Sci. 2015;104(3):1099–107.

    Article  CAS  PubMed  Google Scholar 

  52. Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release. 2016;234:41–8.

    Article  CAS  PubMed  Google Scholar 

  53. Sun Y, Soh S. Printing tablets with fully customizable release profiles for personalized medicine. Adv Mater. 2015;27(47):7847–53.

    Article  CAS  PubMed  Google Scholar 

  54. Khan J, Rades T, Boyd BJ. Lipid-based formulations can enable the model poorly Water-soluble weakly basic drug Cinnarizine to precipitate in an amorphous-salt form during in vitro digestion. Mol Pharm. 2016;13(11):3783–93.

    Article  CAS  PubMed  Google Scholar 

  55. Kaukonen AM, Boyd BJ, Porter CJH, Charman WN. Drug solubilization behavior during in vitro digestion of simple triglyceride lipid solution formulations. Pharm Res. 2004;21(2):245–53.

    Article  CAS  PubMed  Google Scholar 

  56. Mohsin K. Design of Lipid-Based Formulations for Oral Administration of Poorly Water-Soluble Drug Fenofibrate: effects of digestion. AAPS PharmSciTech. 2012;13(2):637–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thomas N, Holm R, Garmer M, Karlsson J, Müllertz A, Rades T. Supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS) enhance the bioavailability of the poorly Water-soluble drug simvastatin in dogs. AAPS J. 2013;15(1):219–27.

    Article  CAS  PubMed  Google Scholar 

  58. Khan J, Hawley A, Rades T, Boyd BJ. In situ lipolysis and synchrotron small-angle X-ray scattering for the direct determination of the precipitation and solid-state form of a poorly Water-soluble drug during digestion of a lipid-based formulation. J Pharm Sci. 2016;105(9):2631–9.

    Article  CAS  PubMed  Google Scholar 

  59. Stillhart C, Imanidis G, Kuentz M. Insights into drug precipitation kinetics during in vitro digestion of a lipid-based drug delivery system using in-line Raman spectroscopy and mathematical modeling. Pharm Res. 2013;30(12):3114–30.

    Article  CAS  PubMed  Google Scholar 

  60. Williams HD, Sassene P, Kleberg K, Bakala-N'Goma JC, Calderone M, Jannin V, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 1: method parameterization and comparison of in vitro digestion profiles across a range of representative formulations. J Pharm Sci. 2012;101(9):3360–80.

    Article  CAS  PubMed  Google Scholar 

  61. Thomas N, Richter K, Pedersen TB, Holm R, Müllertz A, Rades T. In vitro lipolysis data does not adequately predict the in vivo performance of lipid-based drug delivery systems containing fenofibrate. AAPS J. 2014;16(3):539–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Griffin BT, Kuentz M, Vertzoni M, Kostewicz ES, Fei Y, Faisal W, et al. Comparison of in vitro tests at various levels of complexity for the prediction of in vivo performance of lipid-based formulations: case studies with fenofibrate. Eur J Pharm Biopharm. 2014;86(3):427–37.

    Article  CAS  PubMed  Google Scholar 

  63. Munoz A, Guichard J, Reginault P. Micronised fenofibrate. Atherosclerosis. 1994;110:S45–8.

    Article  CAS  PubMed  Google Scholar 

  64. Vogt M, Kunath K, Dressman JB. Dissolution enhancement of fenofibrate by micronization, cogrinding and spray-drying: comparison with commercial preparations. Eur J Pharm Biopharm. 2008;68(2):283–8.

    Article  CAS  PubMed  Google Scholar 

  65. Kleberg K, Jacobsen F, Fatouros DG, Müllertz A. Biorelevant media simulating fed state intestinal fluids: colloid phase characterization and impact on solubilization capacity. J Pharm Sci. 2010;99(8):3522–32.

    Article  CAS  PubMed  Google Scholar 

  66. Kossena GA, Charman WN, Boyd BJ, Porter CJH. Influence of the intermediate digestion phases of common formulation lipids on the absorption of a poorly water-soluble drug. J Pharm Sci. 2005;94(3):481–92.

    Article  CAS  PubMed  Google Scholar 

  67. Warren DB, Anby MU, Hawley A, Boyd BJ. Real time evolution of liquid crystalline nanostructure during the digestion of formulation lipids using synchrotron small-angle X-ray scattering. Langmuir. 2011;27(15):9528–34.

    Article  CAS  PubMed  Google Scholar 

  68. Larsen AT, Sassene P, Müllertz A. In vitro lipolysis models as a tool for the characterization of oral lipid and surfactant based drug delivery systems. Int J Pharm. 2011;417(1):245–55.

    Article  CAS  PubMed  Google Scholar 

  69. Kaukonen AM, Boyd BJ, Charman WN, Porter CJ. Drug solubilization behavior during in vitro digestion of suspension formulations of poorly water-soluble drugs in triglyceride lipids. Pharm Res. 2004;21(2):254–60.

    Article  CAS  PubMed  Google Scholar 

  70. Phan S, Salentinig S, Prestidge CA, Boyd BJ. Self-assembled structures formed during lipid digestion: characterization and implications for oral lipid-based drug delivery systems. Drug Delivery and Translational Research. 2014;4(3):275–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben J. Boyd.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vithani, K., Goyanes, A., Jannin, V. et al. A Proof of Concept for 3D Printing of Solid Lipid-Based Formulations of Poorly Water-Soluble Drugs to Control Formulation Dispersion Kinetics. Pharm Res 36, 102 (2019). https://doi.org/10.1007/s11095-019-2639-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2639-y

KEY WORDS

Navigation