Skip to main content

Advertisement

Log in

Fibrin Gels Entrapment of a Poly-Cyclodextrin Nanocarrier as a Doxorubicin Delivery System in an Orthotopic Model of Neuroblastoma: Evaluation of In Vitro Activity and In Vivo Toxicity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Fibrin gels (FBGs) are potential delivery vehicles for many drugs, and can be easily prepared from purified components. We previously demonstrated their applicability for the release of different doxorubicin (Dox) nanoparticles used clinically or in an experimental stage, such as its inclusion complex with the amino β-cyclodextrin polymer (oCD-NH2/Dox). Here we extend these studies by in vitro and in vivo evaluations.

Methods

An in vitro cytotoxicity model consisting of an overlay of a neuroblastoma (NB) cell-containing agar layer above a drug-loaded FBG layer was used. Local toxicity in vivo (histology and blood analysis) was studied in a mouse orthotopic NB model (SHSY5YLuc+ cells implanted into the left adrenal gland).

Results

In vitro data show that FBGs loaded with oCD-NH2/Dox have a slightly lower cytotoxicity against NB cell lines than those loaded with Dox. Fibrinogen (FG), and Ca2+ concentrations may modify this activity. In vivo data support a lower general and local toxicity for FBGs loaded with oCD-NH2/Dox than those loaded with Dox.

Conclusion

Our results suggest a possible increase of the therapeutic index of Dox when locally administered through FBGs loaded with oCD-NH2/Dox, opening the possibility of using these releasing systems for the treatment of neuroblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALT:

Alanine transaminase

AST:

Aspartate transaminase

CD:

Cyclodextrin

CRE:

Creatinine

DDP:

Cisplatin

Dox:

Doxorubicin

FBG:

Fibrin gel

FG:

Fibrinogen

NB:

Neuroblastoma

oCD-NH2 :

Cyclodextrin oligomer

oCD-NH2/Dox:

Cyclodextrin oligomer loaded with Dox

PUN:

Plasma urea nitrogen

ROI:

Region of interest

References

  1. Doolittle RF. The molecular biology of fibrin. In: Stamatoyannopoulos G, Majerus PW, Perlmutter RM, Varmus H, editors. The molecular basis of blood diseases. Philadelphia: Saunders; 2000. p. 719–39.

    Google Scholar 

  2. Weisel JW. Fibrinogen and fibrin. Adv Protein Chem. 2005;70:247–99.

    CAS  PubMed  Google Scholar 

  3. Küçükerdönmez C, Karalezli A, Zengin MO, Akova YA. Vascularization of conjunctival autografts in pterygium surgery: comparison of fibrin glue with sutures. Eur J Ophthalmol. 2014;24(6):824–9.

    PubMed  Google Scholar 

  4. Mouritzen C, Dromer M, Keinecke HO. The effect of fibrin glueing to seal bronchial and alveolar leakages after pulmonary resection and decortications. Eur J Cardithorac Surg. 1993;7(2):75–80.

    CAS  Google Scholar 

  5. Tashnizi MA, Alamdari DH, Khayami ME, Rahimi HR, Moeinipour A, Amouzeshi A, et al. Treatment of non-healing sternum wound after open-heart surgery with allogenic platelet-rich plasma and fibrin glue-preliminary outcomes. Indian J Plast Surg. 2013;46(3):538–42.

    PubMed  PubMed Central  Google Scholar 

  6. Okada M, Blombäck B. Factors influencing fibrin gel structure studied by flow measurement. Ann N Y Acad Sci. 1983;408:233–53.

    CAS  PubMed  Google Scholar 

  7. Wolberg AS, Campbell RA. Thrombin generation, fibrin clot formation and hemostasis. Transfus Apher Sci. 2008;38(1):15–23.

    PubMed  PubMed Central  Google Scholar 

  8. Chung YI, Kim SK, Lee YK, Park SJ, Cho KO, Yuk SH, et al. Efficient revascularization by VEGF administration via heparin-functionalized nanoparticle–fibrin complex. J Control Release. 2010;143(3):282–9.

    CAS  PubMed  Google Scholar 

  9. Dinges HP, Redl H, Thurnher M, Schiesser A, Schlag G. Morphometric studies on wound healing after systemic administration of adriamycin and local application of fibrin sealant: application of a new wound healing model using spongiosa implants. Path Res Pract. 1986;181(6):746–54.

    CAS  PubMed  Google Scholar 

  10. Hubbell JA. Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol. 2003;14(5):551–8.

    CAS  PubMed  Google Scholar 

  11. Lei Y, Huang S, Sharif-Kashani P, Chen Y, Kavehpour P, Segura T. Incorporation of active DNA/cationic polymer polyplexes into hydrogel scaffolds. Biomaterials. 2010;31(34):9106–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ogura Y, Mizumoto K, Tanaka M, Ohuchida K, Murakami M, Yamada D, et al. Strategy for prevention of local recurrence of pancreatic cancer after pancreatectomy: antitumor effect of gemcitabine mixed with fibrin glue in an orthotopic nude mouse model. Surgery. 2006;140(1):66–71.

    PubMed  Google Scholar 

  13. Opitz I, Erne BV, Demirbas S, Jetter A, Seifert B, Stahel R, et al. Optimized intrapleural cisplatin chemotherapy with a fibrin carrier after extrapleural pneumonectomy: a preclinical study. J Thorac Cardiovasc Surg. 2011;141(1):65–71.

    PubMed  Google Scholar 

  14. Rajangam T, An SS. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomedicine. 2013;8:3641–62.

    PubMed  PubMed Central  Google Scholar 

  15. Viale M, Rossi M, Russo E, Cilli M, Aprile A, Profumo A, et al. Fibrin gels loaded with cisplatin and cisplatin-hyaluronate complexes tested in a subcutaneous human melanoma model. Investig New Drugs. 2015;33(6):1151–61.

    CAS  Google Scholar 

  16. Viale M, Giglio V, Monticone M, Maric I, Lentini G, Rocco M, et al. New doxorubicin nanocarriers based on cyclodextrins. Invest New Drug. 2017;35(5):539–44.

    CAS  Google Scholar 

  17. Thakor AS, Gambhir SS. Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin. 2013;63(6):395–418.

    PubMed  Google Scholar 

  18. Key J, Park K. Multicomponent, tumor-homing chitosan nanoparticles for cancer imaging and therapy. Int J Mol Sci. 2017;18(3):pii E594.

    Google Scholar 

  19. Lee MS, Dees EC, Wang AZ. Nanoparticle-delivered chemotherapy: old drugs in new packages. Oncology (Williston Park). 2017;31(3):198–208.

    Google Scholar 

  20. Gidwani B, Vyas A. Synthesis, characterization and application of epichlorohydrin-β-cyclodextrin polymer. Colloids Surf B. 2014;114:130–7.

    CAS  Google Scholar 

  21. Ruiz-Esparza GU, Wu S, Segura-Ibarra V, Cara FE, Evans KW, Milosevic M, et al. Polymer nanoparticles encased in a cyclodextrin complex shell for potential site- and sequence-specific drug release. Adv Funct Mater. 2014;24(30):4753–61.

  22. Oliveri V, D’Agata R, Giglio V, Spoto G, Vecchio G. Cyclodextrin-functionalised gold nanoparticles via streptavidin: a supramolecular approach. Supramol Chem. 2013;25(8):465–73.

    CAS  Google Scholar 

  23. Oliveri G, Bellia F, Vecchio G. Cyclodextrin nanoparticles bearing 8-hydroxyquinoline ligands as multifunctional biomaterials. Chemistry. 2017;23(18):4442–9.

    CAS  PubMed  Google Scholar 

  24. Swaminathan S, Cavalli R, Trotta F. Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. WIREs Nanomed Nanobiotechnol. 2016;8(4):579–601.

    CAS  PubMed  Google Scholar 

  25. Heidel JD, Schluep T. Cyclodextrin-containing polymers: versatile platforms of drug delivery materials. J Drug Deliv. 2012;2012:262731.

    PubMed  PubMed Central  Google Scholar 

  26. Giglio V, Sgarlata C, Vecchio G, Novel amino-cyclodextrin cross-linked oligomer as efficient carrier for anionic drugs: a spectroscopic and nanocalorimetric investigation. RSC Adv. 2015;5:16664–71.

    CAS  Google Scholar 

  27. Viale M, Monticone M, Maric I, Giglio V, Profumo A, Aprile A, et al. Characterization of drug release from fibrin gels loaded with different pharmaceutical and experimental doxorubicin formulations. Invest New Drug. 2018;70(4):760–5.

    CAS  Google Scholar 

  28. Pastorino F, Marimpietri D, Brignole C, Di Paolo D, Pagnan G, Daga A, et al. Ligand targeted liposomal therapies of neuroblastoma. Curr Med Chem. 2007;14(29):3070–8.

    CAS  PubMed  Google Scholar 

  29. Lotrionte M, Biondi-Zoccai G, Abbate A, Lanzetta G, D'Ascenzo F, Malavasi V, et al. Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am J Cardiol. 2013;112(12):1980–4.

    CAS  PubMed  Google Scholar 

  30. Jenkins GR, Lee T, Moland CL. Vijay V, Herman EH, Lewis SM, Davis KJ, Muskhelishvili L, Kerr S, Fuscoe JC, Desai VG.. Sex-related differential susceptibility to doxorubicin-induced cardiotoxicity in B6C3F1 mice. Toxicol Appl Pharmacol 2016;310:159–174.

    CAS  PubMed  Google Scholar 

  31. Oliveri V, Bellia F, Viale M, Maric I, Vecchio G. Linear polymers of β and γ cyclodextrins with a polyglutamic acid backbone as carriers for doxorubicin. Carbohydr Polym. 2017;177:355–60.

    CAS  PubMed  Google Scholar 

  32. Giglio V, Viale M, Monticone M, Aura AM, Spoto G, Natile G, et al. Cyclodextrin polymers as carries for the platinum-based anticancer agent LA-12. RSC Adv. 2016;6(15):12461–6.

    CAS  Google Scholar 

  33. Giglio V, Viale M, Bertone V, Maric I, Vaccarone R, Vecchio G. Cyclodextrin polymers as nanocarriers for sorafenib. Invest New Drug. 2018;36(3):370–9.

    CAS  Google Scholar 

  34. Kanwar JR, Long BM, Kanwar RK. The use of cyclodextrins nanoparticles for oral delivery. Curr Med Chem. 2011;18(14):2079–85.

    CAS  PubMed  Google Scholar 

  35. Giglio V, Sgarlata C, Vecchio G. Novel amino-cyclodextrin cross-linked oligomer as efficient carrier for anionic drugs: a spectroscopic and nanocalorimetric investigation. RSC Adv. 2015;5(22):16664–71.

    CAS  Google Scholar 

  36. Davidoff AM, Fernandez-Pineda I. Complications in the surgical management of children with malignant solid tumors. Sem Ped Surg. 2016;25(6):395–403.

    Google Scholar 

  37. Gerardi C, Banzi R, Bertele’ V, Garattini S. Clinical research on rare diseases of children: neuroblastoma. Cancer Chemother Pharmacol. 2017;79(2):267–73.

    PubMed  Google Scholar 

  38. Park JR, Bagatell R, Cohn SL, Pearson AD, Villablanca JG, Berthold F, et al. Revisions to the international neuroblastoma response criteria: a consensus statement from the National Cancer Institute clinical trials planning meeting. J Clin Oncol. 2017;35(22):2580–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bensimhon P, Villablanca JG, Sender LS, Matthay KK, Park JR, Seeger R, et al. Peripheral blood stem cell support for multiple cycles of dose intensive induction therapy is feasible with little risk of tumor contamination in advanced stage neuroblastoma: a report from the Childrens oncology group. Pediatr Blood Cancer. 2010;54(4):596–602.

    PubMed  PubMed Central  Google Scholar 

  40. Tran HC, Marachelian A, Venkatramani R, Jubran RF, Mascarenhas L. Oxaliplatin and doxorubicin for relapsed or refractory high-risk neuroblastoma. Hematol Oncol. 2015;32(1):26–31.

    CAS  Google Scholar 

  41. Balsari A, Lombardo N, Ghione M. Skin and perivascular toxicity induced experimentally by doxorubicin. J Chemother. 1989;1(5):324–9.

    CAS  PubMed  Google Scholar 

  42. Balazsovits JA, Mayer LD, Bally MB, Cullis PR, McDonell M, Ginsberg RS, et al. Analysis of the effect of liposome encapsulation on the vesicant properties, acute and cardiac toxicities, and antitumor efficacy of doxorubicin. Cancer Chemother Pharmacol. 1989;23(2):81–6.

    CAS  PubMed  Google Scholar 

  43. Pratesi G, Savi G, Pezzoni G, Bellini O, Penco S, Tinelli S, et al. Poly-L-aspartic acid as a carrier for doxorubicin: a comparative in vivo study of free and polymer-bound drug. Br J Cancer. 1985;52(6):841–8.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments and Disclosures

Financial support of this study was mainly provided by the Compagnia di San Paolo (Turin, Italy) under Grant 2012.1020. The authors are grateful for additional support from Università degli Studi di Catania (Piano della Ricerca di Ateneo 2016–2018). We thank Dr. E. Brookes, University of Montana, Missoula, MT, USA, for carefully checking our manuscript for English usage. There is no conflict of interest about this article. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Viale.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viale, M., Vecchio, G., Monticone, M. et al. Fibrin Gels Entrapment of a Poly-Cyclodextrin Nanocarrier as a Doxorubicin Delivery System in an Orthotopic Model of Neuroblastoma: Evaluation of In Vitro Activity and In Vivo Toxicity. Pharm Res 36, 115 (2019). https://doi.org/10.1007/s11095-019-2636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2636-1

Key words

Navigation