Skip to main content
Log in

Differentiating the Effects of Oxidative Stress Tests on Biopharmaceuticals

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A rapid and broadly applicable method to assess relevant oxidative damage in biopharmaceuticals is important for lifecycle management of product quality. Multiple methods are currently employed as stress tests to induce oxidative damage for assessment of stability, safety, and efficacy. We compared two common methods for inducing oxidative damage to assess differences in impact on bioactivity and structure of the biopharmaceuticals.

Methods

Biopharmaceuticals were treated with either metal-catalyzed oxidation (MCO) conditions or the reactive-oxygen species (ROS) inducer 2,2′-Azobis(2-amidinopropane) dihydrochloride (AAPH), then analyzed for changes in structure and bioactivity.

Results

We demonstrate that commonly used chemical methods for assessing oxidation yield distinct oxidation profiles for each of the biotechnology products analyzed, including monoclonal antibodies. We further report oxidant- and product-specific changes in bioactivity under oxidizing conditions, along with differential oxidation on the molecular subunits of monoclonal antibodies.

Conclusion

Our results highlight the need for product-specific optimization and selection of orthogonal, relevant oxidizers when characterizing stress responses in biopharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAPH:

2,2′-Azobis(2-amidinopropane) dihydrochloride

ABS:

(4-amino)benzenesulfonic acid

ADCC:

antibody-dependent cell-mediated cytotoxicity

Bis-ANS:

4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid

DNPH:

2,4-dinitrophenylhydrazine

DOPA:

dihydroxyphenylalanine

ELISA:

enzyme-linked immunosorbence assay

G-CSF:

granulyte-colony stimulating factor

HSA:

human serum albumin

LC-MS:

liquid chromatography-mass spectrometry

MCO:

metal-catalyzed oxidation

ROS:

reactive oxygen species

RP-HPLC:

reverse phase high-performance liquid chromatography

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TBTA:

tris(benzyltriazolylmethyl)amine

TMB:

3,3′,5,5′-tetramethylbenzidine

References

  1. International conference on harmonization of technical requirements for registration of pharmaceuticals for human use. Quality of biotechnological products: stability testing of biotechnological/biological products. Annex to the ICH Harmonised Tripartite Guideline for the Stability Testing of New Drug Substances andProducts. Dev Biol Stand. 1998;93:211–9.https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q5C/Step4/Q5C_Guideline.pdf.

  2. Gao X, et al. Effect of individual Fc methionine oxidation on FcRn binding: Met252 oxidation impairs FcRn binding more profoundly than Met428 oxidation. J Pharm Sci. 2015;104(2):368–77.

    Article  CAS  PubMed  Google Scholar 

  3. Wang W, et al. Impact of methionine oxidation in human IgG1 fc on serum half-life of monoclonal antibodies. Mol Immunol. 2011;48(6–7):860–6.

    Article  CAS  PubMed  Google Scholar 

  4. Fliszar KA, Walker D, Allain L. Profiling of metal ions leached from pharmaceutical packaging materials. PDA J Pharm Sci Technol. 2006;60(6):337–42.

    CAS  PubMed  Google Scholar 

  5. Wang W, Ignatius AA, Thakkar SV. Impact of residual impurities and contaminants on protein stability. J Pharm Sci. 2014;103(5):1315–30.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou S, et al. Biotherapeutic formulation factors affecting metal leachables from stainless steel studied by design of experiments. AAPS PharmSciTech. 2012;13(1):284–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou S, Schoneich C, Singh SK. Biologics formulation factors affecting metal leachables from stainless steel. AAPS PharmSciTech. 2011;12(1):411–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Torosantucci R, Schoneich C, Jiskoot W. Oxidation of therapeutic proteins and peptides: structural and biological consequences. Pharm Res. 2014;31(3):541–53.

    Article  CAS  PubMed  Google Scholar 

  9. Singh SR, et al. Effect of polysorbate 80 quality on photostability of a monoclonal antibody. AAPS PharmSciTech. 2012;13(2):422–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lam XM, et al. Site-specific tryptophan oxidation induced by autocatalytic reaction of polysorbate 20 in protein formulation. Pharm Res. 2011;28(10):2543–55.

    Article  CAS  PubMed  Google Scholar 

  11. Ugur Z, Gronert S. A robust analytical approach for the identification of specific protein Carbonylation sites: metal-catalyzed oxidations of human serum albumin. Anal Lett. 2017;50(3):567–79.

    Article  CAS  PubMed  Google Scholar 

  12. Reid LO, et al. Photooxidation of tryptophan and tyrosine residues in human serum albumin sensitized by Pterin: a model for globular protein Photodamage in skin. Biochemistry. 2016;55(34):4777–86.

    Article  CAS  PubMed  Google Scholar 

  13. Pan B, et al. Comparative oxidation studies of methionine residues reflect a structural effect on chemical kinetics in rhG-CSF. Biochemistry. 2006;45(51):15430–43.

    Article  CAS  PubMed  Google Scholar 

  14. Kryndushkin D, et al. Complex nature of protein Carbonylation specificity after metal-catalyzed oxidation. Pharm Res. 2017;34(4):765–79.

    Article  CAS  PubMed  Google Scholar 

  15. Narhi LO, et al. Chemical and biophysical characteristics of monoclonal antibody solutions containing aggregates formed during metal catalyzed oxidation. Pharm Res. 2017;34(12):2817–28.

    Article  CAS  PubMed  Google Scholar 

  16. Rivett AJ, Levine RL. Metal-catalyzed oxidation of Escherichia coli glutamine synthetase: correlation of structural and functional changes. Arch Biochem Biophys. 1990;278(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  17. Uehara H, et al. Distinct oxidative cleavage and modification of bovine [cu- Zn]-SOD by an ascorbic acid/cu(II) system: identification of novel copper binding site on SOD molecule. Free Radic Biol Med. 2016;94:161–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chennamsetty N, et al. Modeling the oxidation of methionine residues by peroxides in proteins. J Pharm Sci. 2015;104(4):1246–55.

    Article  CAS  PubMed  Google Scholar 

  19. Yang Y, et al. Investigation of metal-catalyzed antibody Carbonylation with an improved protein Carbonylation assay. J Pharm Sci. 2018;107(10):2570–80.

    Article  CAS  PubMed  Google Scholar 

  20. Betigeri S, Thakur A, Raghavan K. Use of 2,2′-azobis(2-amidinopropane) dihydrochloride as a reagent tool for evaluation of oxidative stability of drugs. Pharm Res. 2005;22(2):310–7.

    Article  CAS  PubMed  Google Scholar 

  21. Dion MZ, et al. The use of a 2,2′-Azobis (2-Amidinopropane) Dihydrochloride stress model as an Indicator of oxidation susceptibility for monoclonal antibodies. J Pharm Sci. 2018;107(2):550–8.

    Article  CAS  PubMed  Google Scholar 

  22. Werber J, et al. Analysis of 2,2′-azobis (2-amidinopropane) dihydrochloride degradation and hydrolysis in aqueous solutions. J Pharm Sci. 2011;100(8):3307–15.

    Article  CAS  PubMed  Google Scholar 

  23. Niki E, et al. Oxidation of lipids. XII. Inhibition of oxidation of soybean phosphatidylcholine and methyl linoleate in aqueous dispersion by uric acid. Bull Chem Soc Jpn. 1986;59(2):471–7.

    Article  CAS  Google Scholar 

  24. Ji JA, et al. Methionine, tryptophan, and histidine oxidation in a model protein, PTH: mechanisms and stabilization. J Pharm Sci. 2009;98(12):4485–500.

    Article  CAS  PubMed  Google Scholar 

  25. Chao CC, Ma YS, Stadtman ER. Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems. Proc Natl Acad Sci U S A. 1997;94(7):2969–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Folzer E, et al. Selective oxidation of methionine and tryptophan residues in a therapeutic IgG1 molecule. J Pharm Sci. 2015;104(9):2824–31.

    Article  CAS  PubMed  Google Scholar 

  27. Uehara H, Rao VA. Metal-mediated protein oxidation: applications of a modified ELISA-based carbonyl detection assay for complex proteins. Pharm Res. 2015;32(2):691–701.

    Article  CAS  PubMed  Google Scholar 

  28. Bommana R, et al. An efficient and rapid method to monitor the oxidative degradation of protein pharmaceuticals: probing tyrosine oxidation with Fluorogenic derivatization. Pharm Res. 2017;34(7):1428–43.

    Article  CAS  PubMed  Google Scholar 

  29. Lin S, et al. Redox-based reagents for chemoselective methionine bioconjugation. Science. 2017;355(6325):597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sokolowska I, et al. Subunit mass analysis for monitoring antibody oxidation. MAbs. 2017;9(3):498–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Regl C, et al. A generic HPLC method for absolute quantification of oxidation in monoclonal antibodies and fc-fusion proteins using UV and MS detection. Anal Chem. 2017;89(16):8391–8.

    Article  CAS  PubMed  Google Scholar 

  32. Leblanc Y, et al. LC-MS analysis of polyclonal IgGs using IdeS enzymatic proteolysis for oxidation monitoring. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;961:1–4.

    Article  CAS  PubMed  Google Scholar 

  33. Hasan MA, et al. predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue. Anal Biochem. 2017;525:107–13.

    Article  CAS  PubMed  Google Scholar 

  34. Khan MMT, Martell AE. Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen .I. Cupric and Ferric Ion catalyzed oxidation. J. Am. Chem. Soc. 1967;89(16):4176.

    Article  CAS  PubMed  Google Scholar 

  35. Niki E. Free-radical initiators as source of water-soluble or lipid-soluble Peroxyl radicals. Methods Enzymol. 1990;186:100–8.

    Article  CAS  PubMed  Google Scholar 

  36. Dixit N, et al. Residual host cell protein promotes Polysorbate 20 degradation in a sulfatase drug product leading to free fatty acid particles. J Pharm Sci. 2016;105(5):1657–66.

    Article  CAS  PubMed  Google Scholar 

  37. Ha E, Wang W, Wang YJ. Peroxide formation in polysorbate 80 and protein stability. J Pharm Sci. 2002;91(10):2252–64.

    Article  CAS  PubMed  Google Scholar 

  38. Mouchahoir T, Schiel JE. Development of an LC-MS/MS peptide mapping protocol for the NISTmAb. Anal Bioanal Chem. 2018;410(8):2111–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ghasriani H, et al. Precision and robustness of 2D-NMR for structure assessment of filgrastim biosimilars. Nat Biotechnol. 2016;34(2):139–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu YB, et al. Improving biopharmaceutical safety through verification-based quality control. Trends Biotechnol. 2017;35(12):1140–55.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors thank Drs. Christopher J. Chang and Shixian Lin (University of California, Berkeley) for the generous donation of Ox4 probe for these studies, as well as Perry Beamer (FDA) for his assistance in adapting the DOPA formation assay for quantitation. The authors would also like to thank Dr. Dmitry Kryndushkin (FDA) for helpful discussions regarding amyloid-like structures and Dr. Darón Freedburg (FDA) for assistance with the circular dichroism studies. Drs. Rong-Fong Shen and Wells Wu (FDA) are thanked for assistance with mass spectrometry analyses. The authors are further indebted to Dr. Jeffrey Baker for discussions, as well as Drs. Delaram Moshkelani and Baikuntha Aryal (FDA) for critical reading of the manuscript. This work was funded in part by an appointment to the Research Participation Program at the Office of Biotechnology Products, Center for Drug Evaluation and Research at the U.S. Food and Drug Administration administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the FDA. The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the U.S. Food and Drug Administration and the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Contributions

G.A.H., L.L. and V.A.R. conceived the experiments. G.A.H.and L.L. performed the experiments and analysis. G.A.H. and V.A.R. wrote the manuscript.

Corresponding author

Correspondence to V. Ashutosh Rao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 677 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinzl, G.A., Lai, L. & Rao, V.A. Differentiating the Effects of Oxidative Stress Tests on Biopharmaceuticals. Pharm Res 36, 103 (2019). https://doi.org/10.1007/s11095-019-2627-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2627-2

KEY WORDS

Navigation