Skip to main content

Advertisement

Log in

Cefquinome-Loaded Microsphere Formulations in Protection against Pneumonia with Klebsiella pneumonia Infection and Inflammatory Response in Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to compare in vivo activity between cefquinome (CEQ)-loaded poly lactic-co-glycolic acid (PLGA) microspheres (CEQ-PLGA-MS) and CEQ injection (CEQ-INJ) against Klebsiella pneumonia in a rat lung infection model.

Methods

Forty-eight rats were divided into control group (sham operated without infection and drug treatment), Klebsiella pneumonia model group (KPD + Saline), CEQ-PLGA-MS and CEQ-INJ therapy groups (KPD + CEQ-PLGA-MS and KPD + INJ, respectively). In the KPD + Saline group, rats were infected with Klebsiella pneumonia ATCC 10031. In the KPD + CEQ-PLGA-MS and KPD + INJ groups, infected rats were intravenously injected with 12.5 mg/kg body weight CEQ-PLGA-MS and CEQ-INJ, respectively.

Results

Compared to CEQ-INJ treatment group, CEQ-PLGA-MS treatment further decreased the number of bacteria colonies (decreased to 1.94 lg CFU/g) in lung tissues and the levels of inflammatory cytokine including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-4 (p < 0.05 or p < 0.01) in bronchoalveolar lavage fluid at 48 h. Consistently, a significant decreases of scores of inflammation severity were showed at 48 h in the KPD + CEQ-PLGA-MS treatment group, compared to the KPD + CEQ-INJ treatment group.

Conclusion

Our results reveal that CEQ-PLGA-MS has the better therapeutic effect than CEQ-INJ for Klebsiella pneumonia lung infections in rats. The vehicle of CEQ-PLGA-MS as the promising alternatives to control the lung infections with the important pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BALF:

Bronchoalveolar lavage fluid

CEQ:

Cefquinome

CEQ-INJ:

CEQ injection

CEQ-PLGA-MS:

CEQ-loaded PLGA microspheres

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

IL:

Interleukin

i.v.:

Intravenously

K. pneumonia :

Klebsiella pneumonia

PD:

Pharmacodynamic

PLGA:

Poly lactic-co-glycolic acid

qRT-PCR :

Quantitative reverse transcription-PCR

RPMI:

Roswell Park Memorial Institute

SD:

Standard deviation

TNF:

Tumor necrosis factor

References

  1. Brenwald N, Jevons G, Andrews J, Xiong J, Hawkey P, Wise R. An outbreak of a CTX-M-type beta-lactamase-producing Klebsiella pneumoniae: the importance of using cefpodoxime to detect extended-spectrum beta-lactamases. J Antimicrob Chemother. 2003;51:195–6.

    Article  CAS  Google Scholar 

  2. Dubey D, Raza F, Sawhney A, Pandey PA. Klebsiella pneumoniae renal abscess syndrome: a rare case with metastatic involvement of lungs, eye, and brain. Case Rep Infect Dis. 2013;2013:685346.

    PubMed  PubMed Central  Google Scholar 

  3. Yoshida K, Matsumoto T, Tateda K, Uchida K, Tsujimoto S, Yamaguchi K. Induction of interleukin-10 and down-regulation of cytokine production by Klebsiella pneumoniae capsule in mice with pulmonary infection. J Med Microbiol. 2001;50:456–61.

    Article  CAS  Google Scholar 

  4. Xiao W, Chen P, Wang R, Dong J. Overload training inhibits phagocytosis and ROS generation of peritoneal macrophages: role of IGF-1 and MGF. Eur J Appl Physiol. 2013;113:117–25.

    Article  CAS  Google Scholar 

  5. Kasravi R, Bolourchi M, Farzaneh N, Seifi H, Barin A, Hovareshti P, et al. Efficacy of conventional and extended intra-mammary treatment of persistent sub-clinical mastitis with cefquinome in lactating dairy cows. Trop Anim Health Prod. 2011;43:1203–10.

    Article  Google Scholar 

  6. Vasseur M, Laurentie M, Rolland J, Perrin-Guyomard A. Low or high doses of cefquinome targeting low or high bacterial inocula cure Klebsiella pneumoniae lung infections but differentially impact the levels of antibiotic resistance in fecal flora. Antimicrob Agents Chemother. 2014;58:1744–8.

    Article  Google Scholar 

  7. Park JT, Strominger JL. Mode of action of penicillin. Science. 1957;125:99–101.

    Article  CAS  Google Scholar 

  8. Wang J, Shan Q, Ding H, Liang C, Zeng Z. Pharmacodynamics of cefquinome in a neutropenic mouse thigh model of Staphylococcus aureus infection. Antimicrob Agents Chemother. 2014;58:3008–12.

    Article  Google Scholar 

  9. Zhou Y, Zhao D, Yu Y, Yang X, Shi W, Peng Y. Pharmacokinetics, bioavailability and PK/PD relationship of cefquinome for Escherichia coli in beagle dogs. J Vet Pharmacol Ther. 2015;38:543–8.

    Article  CAS  Google Scholar 

  10. Guo C, Liao X, Wang M, Wang F, Yan C. In vivo pharmacodynamics of Cefquinome in a neutropenic mouse thigh model of Streptococcus suis serotype 2 at varied initial inoculum sizes. Antimicrob Agents Chemother. 2016;60:1114–20.

    Article  CAS  Google Scholar 

  11. Qu S, Zhao L, Zhu J, Wang C, Dai C. Preparation and testing of cefquinome-loaded poly lactic-co-glycolic acid microspheres for lung targeting. Drug deliv. 2017;24:745–51.

    Article  CAS  Google Scholar 

  12. Zhang B, Gu X, Li X, Gu M, Zhang N. Pharmacokinetics and ex-vivo pharmacodynamics of cefquinome against Klebsiella pneumonia in healthy dogs. J Vet Pharmacol Ther. 2014;37:367–73.

    Article  CAS  Google Scholar 

  13. Suarez S, O'hara P, Kazantseva M, Newcomer CE, Hopfer R. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: screening in an infectious disease model. Pharm Res. 2001;18:1315–9.

    Article  CAS  Google Scholar 

  14. Zhou H, Zhang Y, Biggs D, Manning M. Microparticle-based lung delivery of INH decreases INH metabolism and targets alveolar macrophages. J Control Release. 2005;107:288–99.

    Article  CAS  Google Scholar 

  15. Desai K, Schwendeman S. Active self-healing encapsulation of vaccine antigens in PLGA microspheres. J Control Release. 2013;165:62–74.

    Article  CAS  Google Scholar 

  16. Mladenovska K, Kumbaradzi E, Dodov G, Makraduli L, Goracinova K. Biodegradation and drug release studies of BSA loaded gelatin microspheres. Int J Pharm. 2002;242:247–9.

    Article  CAS  Google Scholar 

  17. Wu H, Zhang Z, Wu D, Zhao H, Yu K, Hou Z. Preparation and drug release characteristics of Pingyangmycin-loaded dextran cross-linked gelatin microspheres for embolization therapy. J Biomed Mater Res Part B Appl Biomater. 2006;78:56–62.

    Article  Google Scholar 

  18. Bakker-Woudenberg I, de Jong-Hoenderop J, Michel M. Efficacy of antimicrobial therapy in experimental rat pneumonia: effects of impaired phagocytosis. Infect Immun. 1979;25:366–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kesteman A, Perrin-Guyomard A, Laurentie M. Emergence of resistant Klebsiella pneumoniae in the intestinal tract during successful treatment of Klebsiella pneumoniae lung infection in rats. Antimicrob Agents Chemother. 2010;54:2960–4.

    Article  CAS  Google Scholar 

  20. Long F, Wang Y, Liu L, Zhou J, Cui R, Jiang C. Rapid nongenomic inhibitory effects of glucocorticoids on phagocytosis and superoxide anion production by macrophages. Steroids. 2005;70:55–61.

    Article  CAS  Google Scholar 

  21. Dai C, Li J, Tang S, Li J, Xiao X. Colistin-induced nephrotoxicity in mice involves the mitochondrial, death receptor, and endoplasmic reticulum pathways. Antimicrob Agents Chemother. 2014;58:4075–85.

    Article  Google Scholar 

  22. Mikerov A, Cooper T, Wang G, Hu S. Histopathologic evaluation of lung and extrapulmonary tissues show sex differences in Klebsiella pneumoniae - infected mice under different exposure conditions. Int J Physiol Pathophysiol Pharmacol. 2011;3:176–90.

    PubMed  PubMed Central  Google Scholar 

  23. Tian M, Liu F, Liu H, Zhang Q, Li L, Hou X. Grape seed procyanidins extract attenuates cisplatin-induced oxidative stress and testosterone synthase inhibition in rat testes. Syst Biol Reprod Med. 2018;64:246–59.

    Article  CAS  Google Scholar 

  24. Daglia M, Papetti A, Grisoli P, Aceti C, Spini V. Isolation, identification, and quantification of roasted coffee antibacterial compounds. J Agric Food Chem. 2007;55:10208–13.

    Article  CAS  Google Scholar 

  25. Du X, Zu S, Chen F, Liu Z, Li X, Yang L. Preparation and characterization of cefquinome sulfate microparticles for transdermal delivery by negative-pressure cavitation antisolvent precipitation. Powder Technol. 2016;294:429–36.

    Article  CAS  Google Scholar 

  26. Shan Q, Liang C, Wang J, Li J, Zeng Z. In vivo activity of cefquinome against Escherichia coli in the thighs of neutropenic mice. Antimicrob Agents Chemother. 2014;58:5943–6.

    Article  Google Scholar 

  27. Chi L, Na M, Jung H, Vadevoo S, Kim C. Enhanced delivery of liposomes to lung tumor through targeting interleukin-4 receptor on both tumor cells and tumor endothelial cells. J Control Release. 2015;209:327–36.

    Article  CAS  Google Scholar 

  28. Zhang T, Huang B, Wu H, Wu J. Synergistic effects of co-administration of suicide gene expressing mesenchymal stem cells and prodrug-encapsulated liposome on aggressive lung melanoma metastases in mice. J Control Release. 2015;209:260–71.

    Article  CAS  Google Scholar 

  29. De Clercq K, Schelfhout C, Bracke M, De Wever O. Genipin-crosslinked gelatin microspheres as a strategy to prevent postsurgical peritoneal adhesions: in vitro and in vivo characterization. Biomaterials. 2016;96:33–46.

    Article  Google Scholar 

  30. Kadam P, Chuan H. Erratum to: Rectocutaneous fistula with transmigration of the suture: a rare delayed complication of vault fixation with the sacrospinous ligament. Int Urogynecol J. 2016;27:505.

    Article  Google Scholar 

  31. Acharya A, Clare-Salzler M, Keselowsky B. A high-throughput microparticle microarray platform for dendritic cell-targeting vaccines. Biomaterials. 2009;30:4168–77.

    Article  CAS  Google Scholar 

  32. Aubert-Pouëssel A, Venier-Julienne M, Saulnier P, Sergent M, Benoît J. Preparation of PLGA microparticles by an emulsion-extraction process using glycofurol as polymer solvent. Pharm Res. 2004;21:2384–91.

    Article  Google Scholar 

  33. Freiberg S, Zhu X. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282:1–18.

    Article  CAS  Google Scholar 

  34. Taylor A, Finney-Hayward T, Quint J, Thomas C. Defective macrophage phagocytosis of bacteria in COPD. Eur Respir J. 2010;35:1039–47.

    Article  CAS  Google Scholar 

  35. Song H, Li GW, Ye J, Qian YS. Modulation of mouse neutrophil cytokine secretion by Klebsiella pneumoniae. Comp Clin Pathol. 2004;13:14–8.

    Article  CAS  Google Scholar 

  36. Cruijsen T, Van Leengoed L, Dekker-Nooren T. Phagocytosis and killing of Actinobacillus pleuropneumoniae by alveolar macrophages and polymorphonuclear leukocytes isolated from pigs. Infect Immun. 1992;60:4867–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zamuner S, Zuliani J, Fernandes C, Gutiérrez J. Inflammation induced by Bothrops asper venom: release of proinflammatory cytokines and eicosanoids, and role of adhesion molecules in leukocyte infiltration. Toxicon. 2005;46:806–13.

    Article  CAS  Google Scholar 

  38. Turner M, Nedjai B, Hurst T, Pennington D. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 2014;1843:2563–82.

    Article  CAS  Google Scholar 

  39. Zhou H, Yan J, Fang L, Zhang H, Su L, Zhou G. Change and significance of IL-8, IL-4, and IL-10 in the pathogenesis of terminal ileitis in SD rat. Cell Biochem Biophys. 2014;69:327–31.

    Article  CAS  Google Scholar 

  40. Dulek D, Newcomb D, Goleniewska K, Cephus J, Zhou W. Allergic airway inflammation decreases lung bacterial burden following acute Klebsiella pneumoniae infection in a neutrophil- and CCL8-dependent manner. Infect Immun. 2014;82:3723–39.

    Article  Google Scholar 

  41. Li F, Cui S, Zha X, Bansal V, Jiang Y. Structure and bioactivity of a polysaccharide extracted from protocorm-like bodies of Dendrobium huoshanense. Int J Biol Macromol. 2015;72:664–72.

    Article  CAS  Google Scholar 

  42. Jiao L, Jiang P, Zhang L, Wu M. Antitumor and immunomodulating activity of polysaccharides from Enteromorpha intestinalis. Biotechnol Bioprocess Eng. 2010;15:421–8.

    Article  CAS  Google Scholar 

  43. Im S, Kim K, Ki H, Lee K, Shin E. Processed Aloe vera gel ameliorates cyclophosphamide-induced immunotoxicity. Int J Mol Sci. 2014;15:19342–54.

    Article  CAS  Google Scholar 

  44. Bethea J, Nagashima H, Acosta M, Briceno C, Gomez F. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma. 1999;16:851–63.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the national key research and development plan (NO. 2016YFD0501309) and startup and innovation leader talent plan of Qingdao 15–10–3-15-(41)-zch. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihui Hao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 14.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, S., Dai, C., Yang, F. et al. Cefquinome-Loaded Microsphere Formulations in Protection against Pneumonia with Klebsiella pneumonia Infection and Inflammatory Response in Rats. Pharm Res 36, 74 (2019). https://doi.org/10.1007/s11095-019-2614-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2614-7

Keywords

Navigation