Skip to main content

Advertisement

Log in

Antiretroviral Hydrophobic Core Graft-Copolymer Nanoparticles: The Effectiveness against Mutant HIV-1 Strains and in Vivo Distribution after Topical Application

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Developing and testing of microbicides for pre-exposure prophylaxis and post-exposure protection from HIV are on the list of major HIV/AIDS research priorities. To improve solubility and bioavailability of highly potent anti-retroviral drugs, we explored the use of a nanoparticle (NP) for formulating a combination of two water-insoluble HIV inhibitors.

Methods

The combination of a non-nucleoside HIV reverse transcriptase inhibitor (NNRTI), Efavirenz (EFV), and an inhibitor of HIV integrase, Elvitegravir (ELV) was stabilized with a graft copolymer of methoxypolyethylene glycol-polylysine with a hydrophobic core (HC) composed of fatty acids (HC-PGC). Formulations were tested in TZM-bl cells infected either with wild-type HIV-1IIIB, or drug-resistant HIV-1 strains. In vivo testing of double-labeled NP formulations was performed in female rats after a topical intravaginal administration using SPECT/CT imaging and fluorescence microscopy.

Results

We observed a formation of stable 23–30 nm NP with very low cytotoxicity when EFV and ELV were combined with HC-PGC at a 1:10 weight ratio. For NP containing ELV and EFV (at 1:1 by weight) we observed a remarkable improvement of EC50 of EFV by 20 times in the case of A17 strain. In vivo imaging and biodistribution showed in vivo presence of NP components at 24 and 48 h after administration, respectively.

Conclusions

insoluble orthogonal inhibitors of HIV-1 life cycle may be formulated into the non-aggregating ultrasmall NP which are highly efficient against NNRTI-resistant HIV-1 variant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AF488:

Alexa Fluor 488

DP:

Degree of polymerization

EFV:

Efavirenz

ELV:

Elvitegravir

HC-PGC:

Hydrophobic core protected graft copolymer

INSTI:

Strand transfer inhibitor of HIV integrase

MPEG-gPLL:

methoxypoly(ethylene glycol)- graft-N-ε-poly-l-lysine

M5P10OL:

methoxypoly(ethylene glycol)5000- graft-N-ε-poly-l-lysine (DP 55) acylated with oleic acid

M5P10ST:

methoxypoly(ethylene glycol)5000-graft- N-ε-poly-l-lysine (DP55) acylated with stearic acid

NNRTI:

non-nucleoside reverse transcriptase inhibitor

References

  1. Frankel AD, Young JA. HIV-1: fifteen proteins and an RNA. Annu Rev Biochem. 1998;67:1–25.

    Article  CAS  PubMed  Google Scholar 

  2. Katz RA, Skalka AM. The retroviral enzymes. Annu Rev Biochem. 1994;63:133–73.

    Article  CAS  PubMed  Google Scholar 

  3. Witvrouw M, Van Maele B, Vercammen J, Hantson A, Engelborghs Y, De Clercq E, et al. Novel inhibitors of HIV-1 integration. Curr Drug Metab. 2004;5(4):291–304.

    Article  CAS  PubMed  Google Scholar 

  4. Anthony NJ. HIV-1 integrase: a target for new AIDS chemotherapeutics. Curr Top Med Chem. 2004;4(9):979–90.

    Article  CAS  PubMed  Google Scholar 

  5. Schiller DS, Youssef-Bessler M. Etravirine: a second-generation nonnucleoside reverse transcriptase inhibitor (NNRTI) active against NNRTI-resistant strains of HIV. Clin Ther. 2009;31(4):692–704.

    Article  CAS  PubMed  Google Scholar 

  6. Garvey L, Winston A. Rilpivirine: a novel non-nucleoside reverse transcriptase inhibitor. Expert Opin Investig Drugs. 2009;18(7):1035–41.

    Article  CAS  PubMed  Google Scholar 

  7. PubChem Compound Database; CID=64139, https://pubchem.ncbi.nlm.nih.gov/compound/64139 In.: National Center for Biotechnology Information. Accessed 27 Feb 2019.

  8. PubChem Compound Database; CID=5277135, In.: National Center for Biotechnology Informationhttps://pubchem.ncbi.nlm.nih.gov/compound/5277135. Accessed 27 Feb 2019.

  9. Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  10. Cagel M, Tesan FC, Bernabeu E, Salgueiro MJ, Zubillaga MB, Moretton MA, et al. Polymeric mixed micelles as nanomedicines: achievements and perspectives. Eur J Pharm Biopharm. 2017;113:211–28.

    Article  CAS  PubMed  Google Scholar 

  11. Upponi JR, Jerajani K, Nagesha DK, Kulkarni P, Sridhar S, Ferris C, et al. Polymeric micelles: Theranostic co-delivery system for poorly water-soluble drugs and contrast agents. Biomaterials. 2018;170:26–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mandal S, Prathipati PK, Kang G, Zhou Y, Yuan Z, Fan W, et al. Tenofovir alafenamide and elvitegravir loaded nanoparticles for long-acting prevention of HIV-1 vaginal transmission. AIDS. 2017;31(4):469–76.

    Article  CAS  PubMed  Google Scholar 

  13. Machado A, Cunha-Reis C, Araujo F, Nunes R, Seabra V, Ferreira D, et al. Development and in vivo safety assessment of tenofovir-loaded nanoparticles-in-film as a novel vaginal microbicide delivery system. Acta Biomater. 2016;44:332–40.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang Y, Cao S, Bright DK, Bever AM, Blakney AK, Suydam IT, et al. Nanoparticle-based ARV drug combinations for synergistic inhibition of cell-free and cell-cell HIV transmission. Mol Pharm. 2015;12(12):4363–74.

    Article  CAS  PubMed  Google Scholar 

  15. Kudalkar SN, Beloor J, Quijano E, Spasov KA, Lee WG, Cisneros JA, et al. From in silico hit to long-acting late-stage preclinical candidate to combat HIV-1 infection. Proc Natl Acad Sci U S A. 2018;115(4):E802–11.

    Article  CAS  PubMed  Google Scholar 

  16. Wu X, Wang N. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation. J Biomater Sci Polym Ed. 2001;12:21–34.

    Article  CAS  PubMed  Google Scholar 

  17. Jain AK, Goyal AK, Mishra N, Vaidya B, Mangal S, Vyas SP. PEG-PLA-PEG block copolymeric nanoparticles for oral immunization against hepatitis B. Int J Pharm. 2010;387(1–2):253–62.

    Article  CAS  PubMed  Google Scholar 

  18. Ham AS, Cost MR, Sassi AB, Dezzutti CS, Rohan LC. Targeted delivery of PSC-RANTES for HIV-1 prevention using biodegradable nanoparticles. Pharm Res. 2009;26(3):502–11.

    Article  CAS  PubMed  Google Scholar 

  19. Destache CJ, Belgum T, Christensen K, Shibata A, Sharma A, Dash A. Combination antiretroviral drugs in PLGA nanoparticle for HIV-1. BMC Infect Dis. 2009;9:198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Steinbach JM, Weller CE, Booth CJ, Saltzman WM. Polymer nanoparticles encapsulating siRNA for treatment of HSV-2 genital infection. J Control Release. 2012;162(1):102–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Belletti D, Tosi G, Forni F, Gamberini MC, Baraldi C, Vandelli MA, et al. Chemico-physical investigation of tenofovir loaded polymeric nanoparticles. Int J Pharm. 2012;436(1–2):753–63.

    Article  CAS  PubMed  Google Scholar 

  22. Serra L, Domenech J, Peppas NA. Engineering design and molecular dynamics of mucoadhesive drug delivery systems as targeting agents. Eur J Pharm Biopharm. 2009;71(3):519–28.

    Article  CAS  PubMed  Google Scholar 

  23. Maisel K, Ensign L, Reddy M, Cone R, Hanes J. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. J Control Release. 2015;197:48–57.

    Article  CAS  PubMed  Google Scholar 

  24. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28–51.

    Article  CAS  PubMed  Google Scholar 

  25. Ensign LM, Cone R, Hanes J. Nanoparticle-based drug delivery to the vagina: a review. J Control Release. 2014;190:500–14.

    Article  CAS  PubMed  Google Scholar 

  26. Destache CJ, Mandal S, Yuan Z, Kang G, Date AA, Lu W, et al. Topical Tenofovir Disoproxil fumarate nanoparticles prevent HIV-1 vaginal transmission in a humanized mouse model. Antimicrob Agents Chemother. 2016;60(6):3633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chiappetta DA, Facorro G, de Celis ER, Sosnik A. Synergistic encapsulation of the anti-HIV agent efavirenz within mixed poloxamine/poloxamer polymeric micelles. Nanomedicine. 2011;7(5):624–37.

    Article  CAS  PubMed  Google Scholar 

  28. Chiappetta DA, Hocht C, Taira C, Sosnik A. Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability [corrected]. Nanomedicine (Lond). 2010;5(1):11–23.

    Article  CAS  Google Scholar 

  29. Castillo G, Reichstetter S, Bolotin E. Extending residence time and stability of peptides by protected graft copolymer (PGC) excipient: GLP-1 example. Pharm Res. 2012;29:306–18.

    Article  CAS  PubMed  Google Scholar 

  30. Bogdanov AJ, Mazzanti M, Castillo G. Bolotin E. Protected graft copolymer (PGC) in imaging and therapy: a platform for the delivery of covalently and non-covalently bound drugs Theranostics. 2012;2(6):553–76.

    CAS  PubMed  Google Scholar 

  31. Leporati A, Novikov MS, Valuev-Elliston VT, Korolev SP, Khandazhinskaya AL, Kochetkov SN, et al. Hydrophobic-core PEGylated graft copolymer-stabilized nanoparticles composed of insoluble non-nucleoside reverse transcriptase inhibitors exhibit strong anti-HIV activity. Nanomedicine. 2016;12(8):2405–13.

    Article  CAS  PubMed  Google Scholar 

  32. Reichstetter S, Castillo GM, Rubinstein I, Nishimoto-Ashfield A, Lai M, Jones CC, et al. Protected graft copolymer excipient leads to a higher acute maximum tolerated dose and extends residence time of vasoactive intestinal peptide significantly better than sterically stabilized micelles. Pharm Res. 2013;30(3):670–82.

    Article  CAS  PubMed  Google Scholar 

  33. Chemical Computing Group Inc. SSW, Suite #910, Montreal, QC, Canada, H3A 2R7. Molecular Operating Environment (MOE). Inc.; 2017.

  34. Case D, Betz R, Botello-Smith W, Cerutti D, Cheatham T, Darden T, et al. AMBER 2016. San Francisco CA: In. University of California; 2016.

    Google Scholar 

  35. Reichstetter S, Castillo GM, Lai MS, Nishimoto-Ashfield A, Banerjee A, Bogdanov A, et al. Protected graft copolymer (PGC) basal formulation of insulin as potentially safer alternative to LantusA (R) (insulin-glargine): a Streptozotocin-induced, diabetic Sprague Dawley rats study. Pharm Res. 2012;29(4):1033–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ensign LM, Tang BC, Wang YY, Tse TA, Hoen T, Cone R, et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transl Med. 2012;4(138):138ra179.

    Article  Google Scholar 

  37. Caligioni CS. Assessing reproductive status/stages in mice. Curr Protoc Neurosci. 2009;Appendix 4:Appendix 4I.

  38. Bogdanov AA Jr, Gupta S, Koshkina N, Corr SJ, Zhang S, Curley SA, et al. Gold nanoparticles stabilized with MPEG-grafted poly(l-lysine): in vitro and in vivo evaluation of a potential theranostic agent. Bioconjug Chem. 2015;26(1):39–50.

    Article  CAS  PubMed  Google Scholar 

  39. Larder BA, Kellam P, Kemp SD. Convergent combination therapy can select viable multidrug-resistant HIV-1 in vitro. Nature. 1993;365(6445):451–3.

    Article  CAS  PubMed  Google Scholar 

  40. Nunberg JH, Schleif WA, Boots EJ, O'Brien JA, Quintero JC, Hoffman JM, et al. Viral resistance to human immunodeficiency virus type 1-specific pyridinone reverse transcriptase inhibitors. J Virol. 1991;65(9):4887–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Donnell D, Baeten JM, Bumpus NN, Brantley J, Bangsberg DR, Haberer JE, et al. HIV protective efficacy and correlates of tenofovir blood concentrations in a clinical trial of PrEP for HIV prevention. J Acquir Immune Defic Syndr. 2014;66(3):340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kibengo FM, Ruzagira E, Katende D, Bwanika AN, Bahemuka U, Haberer JE, et al. Safety, adherence and acceptability of intermittent tenofovir/emtricitabine as HIV pre-exposure prophylaxis (PrEP) among HIV-uninfected Ugandan volunteers living in HIV-serodiscordant relationships: a randomized, clinical trial. PLoS One. 2013;8(9):e74314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Riddell J, Amico KR, Mayer KH. HIV Preexposure prophylaxis: a review. Jama. 2018;319(12):1261–8.

    Article  PubMed  Google Scholar 

  44. Sullivan PS, Siegler AJ. Getting pre-exposure prophylaxis (PrEP) to the people: opportunities, challenges and emerging models of PrEP implementation. Sex Health. 2018;15(6):522–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Murooka TT, Deruaz M, Marangoni F, Vrbanac VD, Seung E, von Andrian UH, et al. HIV-infected T cells are migratory vehicles for viral dissemination. Nature. 2012;490(7419):283–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saba E, Grivel JC, Vanpouille C, Brichacek B, Fitzgerald W, Margolis L, et al. HIV-1 sexual transmission: early events of HIV-1 infection of human cervico-vaginal tissue in an optimized ex vivo model. Mucosal Immunol. 2010;3(3):280–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kulkarni R, Hluhanich R, McColl DM, Miller MD, White KL. The combined anti-HIV-1 activities of emtricitabine and tenofovir plus the integrase inhibitor elvitegravir or raltegravir show high levels of synergy in vitro. Antimicrob Agents Chemother. 2014;58(10):6145–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Sacks D, Ledwaba J, Morris L, Hunt GM. Rapid detection of common HIV-1 drug resistance mutations by use of high-resolution melting analysis and unlabeled probes. J Clin Microbiol. 2017;55(1):122–33.

    Article  CAS  PubMed  Google Scholar 

  49. Nel AM, Coplan P, Smythe SC, McCord K, Mitchnick M, Kaptur PE, et al. Pharmacokinetic assessment of dapivirine vaginal microbicide gel in healthy. HIV-negative women AIDS Res Hum Retroviruses. 2010;26(11):1181–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements and Disclosure

Funding has been provided by NIH grants 1 R21 AI108529, 2R01EB000858, 5 RO1 DK095728 (to A.B.); S10RR027897 and S10RR021043 from the National Center for Research Resources. This work was supported in part by the Ministry of Science and Higher Education of the Russian Federation (project 14.W03.31.0023). We are grateful to Dr. Yuzhen Wang (The UMMS Small Animal Imaging Core Facility) for her expertise in animal imaging, to Dr. Mary Mazzanti for editorial expertise and to Dr. Gregory Hendricks for electron microscopy support. A.B. is consultant, and E.B., J.A., and G.C. are employees of PharmaIN Corp., which is developing products related to the research described in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei A. Bogdanov Jr.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 583 kb)

ESM 2

(PPTX 2107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leporati, A., Gupta, S., Bolotin, E. et al. Antiretroviral Hydrophobic Core Graft-Copolymer Nanoparticles: The Effectiveness against Mutant HIV-1 Strains and in Vivo Distribution after Topical Application. Pharm Res 36, 73 (2019). https://doi.org/10.1007/s11095-019-2604-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2604-9

Keywords

Navigation