Pharmaceutical Research

, 36:65 | Cite as

Surface Modification of Polymeric Nanoparticles with M2pep Peptide for Drug Delivery to Tumor-Associated Macrophages

  • Liang Pang
  • Yihua Pei
  • Gozde Uzunalli
  • Hyesun Hyun
  • L. Tiffany Lyle
  • Yoon YeoEmail author
Research Paper
Part of the following topical collections:
  1. Nanomedicines in Cancer



Tumor-associated macrophages (TAMs) with immune-suppressive M2-like phenotype constitute a significant part of tumor and support its growth, thus making an attractive therapeutic target for cancer therapy. To improve the delivery of drugs that control the survival and/or functions of TAMs, we developed nanoparticulate drug carriers with high affinity for TAMs.


Poly(lactic-co-glycolic acid) nanoparticles were coated with M2pep, a peptide ligand selectively binding to M2-polarized macrophages, via a simple surface modification method based on tannic acid-iron complex. The interactions of M2pep-coated nanoparticles with macrophages of different phenotypes were tested in vitro and in vivo. PLX3397, an inhibitor of the colony stimulating factor-1 (CSF-1)/CSF-1 receptor (CSF-1R) pathway and macrophage survival, was delivered to B16F10 tumors via M2pep-modified PLGA nanoparticles.


In bone marrow-derived macrophages polarized to M2 phenotype, M2pep-coated nanoparticles showed greater cellular uptake than those without M2pep. Consistently, M2pep-coated nanoparticles showed relatively high localization of CD206+ macrophages in B16F10 tumors. PLX3397 encapsulated in M2pep-coated nanoparticles attenuated tumor growth better than the free drug counterpart.


These results support that M2pep-coating can help nanoparticles to interact with M2-like TAMs and facilitate the delivery of drugs that control the tumor-supportive functions of TAMs.


Drug delivery M2pep PLGA nanoparticles PLX3397 tumor-associated macrophages 


Acknowledgments and Disclosures

This work was supported by NIH R01 EB017791, NIH R01 CA232419, and the fellowship support from the China Scholarship Council Fellowship to L.P.

Supplementary material

11095_2019_2596_MOESM1_ESM.pdf (4.4 mb)
ESM 1 (PDF 4.42 mb)


  1. 1.
    Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell. 2010;18(6):884–901.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11(1):69–82.PubMedGoogle Scholar
  3. 3.
    Cirri P, Chiarugi P. Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res. 2011;1(4):482–97.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139(5):891–906.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002;196(3):254–65.PubMedGoogle Scholar
  7. 7.
    Qian B, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.PubMedGoogle Scholar
  9. 9.
    Sawawejksza K, Kandeferszerszeń M. Tumor-associated macrophages as target for antitumor therapy. Arch Immunol Ther Ex. 2018;66(2):97–111.Google Scholar
  10. 10.
    Mantovani A, Schioppa T, Porta C, Allavena P, Sica A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metast Rev. 2006;25(3):315–22.Google Scholar
  11. 11.
    Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol. 2011;29(11):1005–10.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11(11):986–94.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Gan J, Dou Y, Li Y, Wang Z, Wang L, Liu S, et al. Producing anti-inflammatory macrophages by nanoparticle-triggered clustering of mannose receptors. Biomaterials. 2018;178:95–108.PubMedGoogle Scholar
  14. 14.
    Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng. 2018;2:578–88.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Cory TJ, He H, Winchester LC, Kumar S, Fletcher CV. Alterations in P-glycoprotein expression and function between macrophage subsets. Pharm Res. 2016;33(11):2713–21.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Qian Y, Qiao S, Dai Y, Xu G, Dai B, Lu L, et al. A molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano. 2017;11(9):9536–49.PubMedGoogle Scholar
  17. 17.
    Turk MJ, Waters DJ, Low PS. Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer Lett. 2004;213(2):165–72.PubMedGoogle Scholar
  18. 18.
    Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, Breckpot K, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 2012;72(16):4165–77.PubMedGoogle Scholar
  19. 19.
    Maryelise C, Jingjing T, Yu JL, Hua C, Maja Z, Koka M, et al. Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival. Proc Natl Acad Sci U S A. 2013;110(40):15919–24.Google Scholar
  20. 20.
    Ngambenjawong C, Cieslewicz M, Schellinger JG, Pun SH. Synthesis and evaluation of multivalent M2pep peptides for targeting alternatively activated M2 macrophages. J Control Release. 2016;224:103–11.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Ngambenjawong C, Pun SH. Multivalent polymers displaying M2 macrophage-targeting peptides improve target binding avidity and serum stability. Acs Biomater Sci Eng. 2017;3(9):2050–3.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Abouelmagd SA, Meng F, Kim BK, Hyun H, Yeo Y. Tannic acid-mediated surface functionalization of polymeric nanoparticles. ACS Biomater Sci Eng. 2016;2(12):2294–303.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Park J, Brust TF, Lee HJ, Lee SC, Watts VJ, Yeo Y. Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano. 2014;8(4):3347–56.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Han N, Pang L, Xu J, Hyun H, Park J, Yeo Y. Development of surface-variable polymeric nanoparticles for drug delivery to tumors. Mol Pharm. 2017;14(5):1538–47.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Sileika TS, Barrett DG, Zhang R, Lau KHA, Messersmith PB. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew Chem Int Ed Engl. 2013;52(41):10766–70.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Hong S, Yeom J, Song IT, Kang SM, Lee H, Lee H. Pyrogallol 2-Aminoethane: a plant flavonoid-inspired molecule for material-independent surface chemistry. Adv Mater Interfaces. 2014;1:1400113.Google Scholar
  27. 27.
    Wedege E, Svenneby G. Effects of the blocking agents bovine serum albumin and tween 20 in different buffers on immunoblotting of brain proteins and marker proteins. J Immunol Methods. 1986;88(2):233–7.PubMedGoogle Scholar
  28. 28.
    Hyun H, Park J, Willis K, Park JE, Lyle LT, Lee W, et al. Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors. Biomaterials. 2018;180:206–24.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Shin M, Lee HA, Lee M, Shin Y, Song JJ, Kang SW, et al. Targeting protein and peptide therapeutics to the heart via tannic acid modification. Nat Biomed Eng. 2018;2(5):304–17.Google Scholar
  30. 30.
    Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime Rep. 2014;6:13.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–95.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Chamberlain LM, Holtcasper D, Gonzalezjuarrero M, Grainger DW. Extended culture of macrophages from different sources and maturation results in a common M2 phenotype. J Biomed Mater Res A. 2015;103(9):2864–74.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Kroner A, Greenhalgh A, Zarruk J, Passosdossantos R, Gaestel M, David S. TNF and increased intracellular Iron Alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron. 2014;83(5):1098–116.PubMedGoogle Scholar
  35. 35.
    Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125:5591–6.PubMedGoogle Scholar
  36. 36.
    Zhao P, Yin W, Wu A, Tang Y, Wang J, Pan Z, et al. Dual-targeting to Cancer cells and M2 macrophages via biomimetic delivery of Mannosylated albumin nanoparticles for drug-resistant Cancer therapy. Adv Funct Mater. 2017;27(44):1700403.Google Scholar
  37. 37.
    Leonard F, Curtis LT, Yesantharao P, Tanei T, Alexander JF, Wu M, et al. Enhanced performance of macrophage-encapsulated nanoparticle albumin-bound-paclitaxel in hypo-perfused cancer lesions. Nanoscale. 2016;8(25):12544–52.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Kumari A, Silakari O, Singh RK. Recent advances in colony stimulating factor-1 receptor/c-FMS as an emerging target for various therapeutic implications. Biomed Pharmacother. 2018;103:662–79.PubMedGoogle Scholar
  39. 39.
    Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for Cancer therapy. Cancer Cell. 2014;25(6):846–59.PubMedGoogle Scholar
  40. 40.
    Hume DA, Macdonald KPA. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood. 2012;119(8):1810–20.PubMedGoogle Scholar
  41. 41.
    Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19(10):1264–72.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Park J, Sun B, Yeo Y. Albumin-coated nanocrystals for carrier-free delivery of paclitaxel. J Control Release. 2017;263:90–101.PubMedGoogle Scholar
  43. 43.
    Mok S, Tsoi J, Koya RC, Hulieskovan S, West BL, Bollag G,et al. Inhibition of colony stimulating factor-1 receptor improves antitumor efficacy of BRAF inhibition. BMC Cancer. 2015;15(1):356.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Mok S, Koya RC, Tsui C, Xu J, Robert L, Wu L,et al. Inhibition of CSF-1 receptor improves the antitumor efficacy of adoptive cell transfer immunotherapy. Cancer Res. 2014;74(1):153–61.PubMedGoogle Scholar
  45. 45.
    Yan D, Kowal J, Akkari L, Schuhmacher AJ, Huse JT, West BL, et al. Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas. Oncogene. 2017;36(43):6049–58.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Shen S, Li HJ, Chen KG, Wang YC, Yang XZ, Lian ZX, et al. Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster Nanocarrier for Cancer Chemoimmunotherapy. Nano Lett. 2017;17(6):3822–9.PubMedGoogle Scholar
  47. 47.
    Alvey CM, Spinler KR, Irianto J, Pfeifer CR, Hayes B, Xia Y, et al. SIRPA-inhibited, marrow-derived macrophages engorge, accumulate, and differentiate in antibody-targeted regression of solid tumors. Curr Biol. 2017;27(14):2065–77.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Song D, Zhao J, Deng W, Liao Y, Hong X, Hou J. Tannic acid inhibits NLRP3 inflammasome-mediated IL-1β production via blocking NF-κB signaling in macrophages. Biochem Biophys Res Commun. 2018;503(4):3078–85.PubMedGoogle Scholar
  49. 49.
    Xu X, Guo Y, Zhao J, He S, Wang Y, Lin Y, et al. Punicalagin, a PTP1B inhibitor, induces M2c phenotype polarization via up-regulation of HO-1 in murine macrophages. Free Radic Biol Med. 2017;110:408–20.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Industrial and Physical PharmacyPurdue UniversityWest LafayetteUSA
  2. 2.Department of PharmacyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
  3. 3.Department of Comparative PathobiologyPurdue UniversityWest LafayetteUSA
  4. 4.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations