Skip to main content
Log in

A Population Dynamic Energy Budget-Based Tumor Growth Inhibition Model for Etoposide Effects on Wistar Rats

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This work aimed to develop a population PK/PD tumor-in-host model able to describe etoposide effects on both tumor cells and host in Walker-256 tumor-bearing rats.

Methods

Etoposide was investigated on thirty-eight Wistar rats randomized in five arms: two groups of tumor-free animals receiving either placebo or etoposide (10 mg/kg bolus for 4 days) and three groups of tumor-bearing animals receiving either placebo or etoposide (5 or 10 mg/kg bolus for 8 or 4 days, respectively). To analyze experimental data, a tumor-in-host growth inhibition (TGI) model, based on the Dynamic Energy Budget (DEB) theory, was developed. Total plasma and free-interstitial tumor etoposide concentrations were assessed as driver of tumor kinetics.

Results

The model simultaneously describes tumor and host growths, etoposide antitumor effect as well as cachexia phenomena related to both the tumor and the drug treatment. The schedule-dependent inhibitory effect of etoposide is also well captured when the intratumoral drug concentration is considered as the driver of the tumor kinetics.

Conclusions

The DEB-based TGI model capabilities, up to now assessed only in mice, are fully confirmed in this study involving rats. Results suggest that well designed experiments combined with a mechanistic modeling approach could be extremely useful to understand drug effects and to describe all the dynamics characterizing in vivo tumor growth studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AIC:

Akaike’s information criterion

AUC:

Area under the curve

BIC:

Bayesian information criterion

BQL:

Below limit of quantification

BWL:

Body weight loss

CV:

Coefficient of variation

DEB:

Dynamic energy budget

GOF:

Goodness of fit

i.v.:

Intravenous

NPDE:

Normalized prediction distribution errors

PD:

Pharmacodynamic

PK:

Pharmacokinetic

RSE:

Residual standard error

s.c.:

Subcutaneously

TGI:

Tumor Growth Inhibition

VPC:

Visual predictive check

W256:

Walker-256

References

  1. Carrara L, Lavezzi SM, Borella E, De Nicolao G, Magni P, Poggesi I. Current mathematical models for cancer drug discovery. Expert Opin Drug Discovery. 2017;12(8):785–99.

    Google Scholar 

  2. Bonate PL. Modeling tumor growth in oncology. In: Pharmacokinetics in drug development: Springer; 2011. p. 1–19.

  3. Ribba B, Holford NH, Magni P, Trocóniz I, Gueorguieva I, Girard P, et al. A review of mixed-effects models of tumor growth and effects of anticancer drug treatment used in population analysis. CPT: Pharmacometrics & Systems Pharmacology. 2014;3(5):1–10.

    Google Scholar 

  4. Benzekry S, Lamont C, Beheshti A, Tracz A, Ebos JM, Hlatky L, et al. Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput Biol. 2014;10(8):e1003800.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rajman I. PK/PD modelling and simulations: utility in drug development. Drug Discov Today. 2008;13(7):341–6.

    Article  CAS  PubMed  Google Scholar 

  6. Simeoni M, Nicolao GD, Magni P, Rocchetti M, Poggesi I. Modeling of human tumor xenografts and dose rationale in oncology. Drug Discov Today Technol. 2013;10(3):e365–72.

    Article  PubMed  Google Scholar 

  7. Bernard A, Kimko H, Mital D, Poggesi I. Mathematical modeling of tumor growth and tumor growth inhibition in oncology drug development. Expert Opin Drug Metab Toxicol. 2012;8(9):1057–69.

    Article  CAS  PubMed  Google Scholar 

  8. Simeoni M, Magni P, Cammia C, De Nicolao G, Croci V, Pesenti E, et al. Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res. 2004;64(3):1094–101.

    Article  CAS  PubMed  Google Scholar 

  9. Rocchetti M, Poggesi I, Germani M, Fiorentini F, Pellizzoni C, Zugnoni P, et al. A pharmacokinetic-pharmacodynamic model for predicting tumour growth inhibition in mice: a useful tool in oncology drug development. Basic Clin Pharmacol Toxicol. 2005;96(3):265–8.

    Article  CAS  PubMed  Google Scholar 

  10. Garattini S. Pharmacokinetics in cancer chemotherapy. Eur J Cancer. 2007;43(2):271–82.

    Article  CAS  PubMed  Google Scholar 

  11. Trédan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99(19):1441–54.

    Article  PubMed  Google Scholar 

  12. Grantab R, Sivananthan S, Tannock IF. The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells. Cancer Res. 2006;66(2):1033–9.

    Article  CAS  PubMed  Google Scholar 

  13. Terranova N, Tosca EM, Pesenti E, Rocchetti M, Magni P. Modeling tumor growth inhibition and toxicity outcome after administration of anticancer agents in xenograft mice: a dynamic energy budget (DEB) approach. J Theor Biol. 2018;450:1–14.

    Article  CAS  PubMed  Google Scholar 

  14. Van Leeuwen I, Kelpin F, Kooijman S. A mathematical model that accounts for the effects of caloric restriction on body weight and longevity. Biogerontology. 2002;3(6):373–81.

    Article  PubMed  Google Scholar 

  15. Van Leeuwen I, Zonneveld C, Kooijman S. The embedded tumour: host physiology is important for the evaluation of tumour growth. Br J Cancer. 2003;89(12):2254–63.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pigatto MC, Roman RM, Carrara L, Buffon A, Magni P, Dalla Costa T. Pharmacokinetic/ pharmacodynamic modeling of etoposide tumor growth inhibitory effect in Walker-56 tumor-bearing rat model using free intratumoral drug concentrations. Eur J Pharm Sci. 2017;97:70–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kaul S, Igwemezie LN, Stewart DJ, Fields SZ, Kosty M, Levithan N, et al. Pharmacokinetics and bioequivalence of etoposide following intravenous administration of etoposide phosphate and etoposide in patients with solid tumors. J Clin Oncol. 1995;13(11):2835–41.

    Article  CAS  PubMed  Google Scholar 

  18. Toffoli G, Corona G, Sorio R, Robieux I, Basso B, Colussi AM, et al. Population pharmacokinetics and pharmacodynamics of oral etoposide. Br J Clin Pharmacol. 2001;52(5):511–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brazil. Lei 11.794/2008: Procedimentos para Uso Cientifico de Animais; 2008. CXLV, 196, 1-2. Diario Oficial da Uniao, Secao 1 de 9 de outubro de 2008.

  20. Brazil. Ministerio de Ciencia, Tecnologia e Inovacao Conselho Nacional de Controle de Experimentacao Animal; 2013. -CONCEA. Diretriz Brasileira para o cuidado e a utilizacao de animais para fins cientificos e didaticos- DBCA. Brasilia - DF.

  21. NCI. 2012 Frederick ACUC Guidelines Involving Experimental Neoplasia Proposals in Mice and Rats; https://es.scribd.com/document/139069470/ACUC14 (accessed 0.10.3.14).

  22. Pigatto MC, de Araujo BV, Torres BGS, Schmidt S, Magni P, Dalla Costa T. Population pharmacokinetic modeling of etoposide free concentrations in solid tumor. Pharm Res. 2016;33(7):1657–70.

    Article  CAS  PubMed  Google Scholar 

  23. Tuntland T, Ethell B, Kosake T, Blasco F, Zang RX, Jain M, et al. Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research. Front Pharmacol. 2014;5:174.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li X, Yun JK, Choi JS. Effects of morin on the pharmacokinetics of etoposide in rats. Biopharm Drug Dispos. 2007;28(3):151–6.

    Article  PubMed  Google Scholar 

  25. Lee CK, Ki SH, Choi JS. Effects of oral curcumin on the pharmacokinetics of intravenous and oral etoposide in rats: possible role of intestinal CYP3A and P-gp inhibition by curcumin. Biopharm Drug Dispos. 2011;32(4):245–51.

    Article  CAS  PubMed  Google Scholar 

  26. Kooijman SALM. Dynamic energy budgets in biological systems. Cambridge university press; 1993.

  27. Kooijman SALM. Dynamic energy and mass budgets in biological systems. Cambridge university press 2000.

  28. Kooijman SALM. Quantitative aspects of metabolic organization: a discussion of concepts. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 2001;356(1407):331–49.

    Article  CAS  PubMed  Google Scholar 

  29. Lixoft. Monolix version 2016 R; http://lixoft.com/products/monolix/.

  30. Lavielle M. Mixed effects models for the population approach: models, tasks, methods and tools. CRC press; 2014.

  31. Hollingshead MG. Antitumor efficacy testing in rodents. JNCI: Journal of the National Cancer Institute. 2008;100(21):1500–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tannock IF, Lee CM, Tunggal JK, Cowan DS, Egorin MJ. Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin Cancer Res. 2002;8(3):878–84.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Magni.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1575 kb)

ESM 2

(PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosca, E.M., Pigatto, M.C., Dalla Costa, T. et al. A Population Dynamic Energy Budget-Based Tumor Growth Inhibition Model for Etoposide Effects on Wistar Rats. Pharm Res 36, 38 (2019). https://doi.org/10.1007/s11095-019-2568-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2568-9

KEY WORDS

Navigation