Skip to main content
Log in

Knockdown of Orphan Transporter SLC22A18 Impairs Lipid Metabolism and Increases Invasiveness of HepG2 Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this work is to investigate the roles of solute carrier family 22 member 18 (SLC22A18) in lipid metabolism and in establishing the tumor phenotype of HepG2 cells.

Methods

SLC22A18-knockdown HepG2 cells were established by stable transfection with shRNA. Protein expression levels were measured by quantitative proteomics and Western blot analysis. Cell growth was examined by cell counting kit. Accumulation of triglyceride-rich lipid droplets was measured by Oil-Red O staining. Cell migration and invasion were examined by Transwell assays.

Results

SLC22A18-knockdown HepG2 cells accumulated triglyceride-rich lipid droplets and showed decreased expression levels of lysosomal/autophagic proteins, suggesting that lipid degradation is suppressed. Growth of HepG2 cells was decreased by SLC22A18 knockdown, but was restored by free fatty acid supplementation. In addition, SLC22A18 knockdown decreased the expression of insulin-like growth factor-binding protein 1 (IGFBP-1) and increased the invasion ability of HepG2 cells. Exogenous IGFBP-1 blocked the increase of invasion activity induced by SLC22A18 knockdown.

Conclusion

Our results suggest that suppression of SLC22A18 decreased the supply of intracellular free fatty acids from triglyceride-rich lipid droplets by impairing the lysosomal/autophagy degradation pathway and reduced the invasive activity of HepG2 cells by decreasing IGFBP-1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CD:

Chemically defined

FFAs:

Free fatty acids

HCC:

Hepatocellular carcinomas

IGFBP-1:

Insulin-like growth factor-binding protein-1

KCNQ1:

KQT-like subfamily Q, member1

NAFLD:

Non-alcoholic fatty liver disease

shRNA:

Short hairpin RNA

SLC22A18:

Solute carrier family 22 member 18

SQSTM1:

Sequestosome-1

T2DM:

Type 2 diabetes mellitus

References

  1. Chu SH, Ma YB, Feng DF, Li ZQ, Jiang PC. Predictive value of the SLC22A18 protein expression in glioblastoma patients receiving temozolomide therapy. J Transl Med. 2013;11:69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chu SH, Ma YB, Feng DF, Zhang H, Zhu ZA, Li ZQ, et al. Correlation of low SLC22A18 expression with poor prognosis in patients with glioma. J Clin Neurosci. 2012;19(1):95–8.

    Article  CAS  PubMed  Google Scholar 

  3. Gallagher E, Mc Goldrick A, Chung WY, Mc Cormack O, Harrison M, Kerin M, et al. Gain of imprinting of SLC22A18 sense and antisense transcripts in human breast cancer. Genomics. 2006;88(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  4. He H, Xu C, Zhao Z, Qin X, Xu H, Zhang H. Low expression of SLC22A18 predicts poor survival outcome in patients with breast cancer after surgery. Cancer Epidemiol. 2011;35(3):279–85.

    Article  CAS  PubMed  Google Scholar 

  5. Schwienbacher C, Sabbioni S, Campi M, Veronese A, Bernardi G, Menegatti A, et al. Transcriptional map of 170-kb region at chromosome 11p15.5: identification and mutational analysis of the BWR1A gene reveals the presence of mutations in tumor samples. Proc Natl Acad Sci U S A. 1998;95(7):3873–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwienbacher C, Gramantieri L, Scelfo R, Veronese A, Calin GA, Bolondi L, et al. Gain of imprinting at chromosome 11p15: a pathogenetic mechanism identified in human hepatocarcinomas. Proc Natl Acad Sci U S A. 2000;97(10):5445–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jung Y, Jun Y, Lee HY, Kim S, Jung Y, Keum J, et al. Characterization of SLC22A18 as a tumor suppressor and novel biomarker in colorectal cancer. Oncotarget. 2015;6(28):25368–80.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014;13(2):397–406.

    Article  CAS  PubMed  Google Scholar 

  9. Dao D, Frank D, Qian N, O'Keefe D, Vosatka RJ, Walsh CP, et al. IMPT1, an imprinted gene similar to polyspecific transporter and multi-drug resistance genes. Hum Mol Genet. 1998;7(4):597–608.

    Article  CAS  PubMed  Google Scholar 

  10. Nakamura K, Hirayama-Kurogi M, Ito S, Kuno T, Yoneyama T, Obuchi W, et al. Large-scale multiplex absolute protein quantification of drug-metabolizing enzymes and transporters in human intestine, liver, and kidney microsomes by SWATH-MS: comparison with MRM/SRM and HR-MRM/PRM. Proteomics. 2016;16(15–16):2106–17.

    Article  CAS  PubMed  Google Scholar 

  11. Albrecht S, Hartmann W, Houshdaran F, Koch A, Gartner B, Prawitt D, et al. Allelic loss but absence of mutations in the polyspecific transporter gene BWR1A on 11p15.5 in hepatoblastoma. Int J Cancer. 2004;111(4):627–32.

    Article  CAS  PubMed  Google Scholar 

  12. Lin KT, Shann YJ, Chau GY, Hsu CN, Huang CY. Identification of latent biomarkers in hepatocellular carcinoma by ultra-deep whole-transcriptome sequencing. Oncogene. 2014;33(39):4786–94.

    Article  CAS  PubMed  Google Scholar 

  13. Yamamoto T, Izumi-Yamamoto K, Iizuka Y, Shirota M, Nagase M, Fujita T, et al. A novel link between Slc22a18 and fat accumulation revealed by a mutation in the spontaneously hypertensive rat. Biochem Biophys Res Commun. 2013;440(4):521–6.

    Article  CAS  PubMed  Google Scholar 

  14. Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40(9):1092–7.

    Article  CAS  PubMed  Google Scholar 

  15. Asahara S, Etoh H, Inoue H, Teruyama K, Shibutani Y, Ihara Y, et al. Paternal allelic mutation at the Kcnq1 locus reduces pancreatic beta-cell mass by epigenetic modification of Cdkn1c. Proc Natl Acad Sci U S A. 2015;112(27):8332–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ito S, Fujino Y, Ogata S, Hirayama-Kurogi M, Ohtsuki S. Involvement of an orphan transporter, SLC22A18, in cell growth and drug resistance of human breast Cancer MCF7 cells. J Pharm Sci. 2018;107(12):3163–70.

    Article  CAS  PubMed  Google Scholar 

  17. Yang WL, Wei L, Huang WQ, Li R, Shen WY, Liu JY, et al. Vigilin is overexpressed in hepatocellular carcinoma and is required for HCC cell proliferation and tumor growth. Oncol Rep. 2014;31(5):2328–34.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang H, Chen W, Fu X, Su X, Yang A. CBX3 promotes tumor proliferation by regulating G1/S phase via p21 downregulation and associates with poor prognosis in tongue squamous cell carcinoma. Gene. 2018;654:49–56.

    Article  CAS  PubMed  Google Scholar 

  19. Montero J, Morales A, Llacuna L, Lluis JM, Terrones O, Basanez G, et al. Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma. Cancer Res. 2008;68(13):5246–56.

    Article  CAS  PubMed  Google Scholar 

  20. Wu XS, Bao TH, Ke Y, Sun DY, Shi ZT, Tang HR, et al. Hint1 suppresses migration and invasion of hepatocellular carcinoma cells in vitro by modulating girdin activity. Tumour Biol. 2016;37(11):14711–9.

    Article  CAS  PubMed  Google Scholar 

  21. Dai B, Ruan B, Wu J, Wang JL, Shang RZ, Sun W, et al. Insulin-like growth factor binding protein-1 inhibits cancer cell invasion and is associated with poor prognosis in hepatocellular carcinoma. Int J Clin Exp Pathol. 2014;7(9):5645–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu WL, Fan BL, Liu DL, Zhu WX. Abnormal expression of fibrinogen gamma (FGG) and plasma level of fibrinogen in patients with hepatocellular carcinoma. Anticancer Res. 2009;29(7):2531–4.

    CAS  PubMed  Google Scholar 

  23. Giannini EG, Sammito G, Farinati F, Ciccarese F, Pecorelli A, Rapaccini GL, et al. Italian liver Cancer G. determinants of alpha-fetoprotein levels in patients with hepatocellular carcinoma: implications for its clinical use. Cancer. 2014;120(14):2150–7.

    Article  CAS  PubMed  Google Scholar 

  24. Sato S, Genda T, Hirano K, Tsuzura H, Narita Y, Kanemitsu Y, et al. Up-regulated aldo-keto reductase family 1 member B10 in chronic hepatitis C: association with serum alpha-fetoprotein and hepatocellular carcinoma. Liver international : official journal of the International Association for the Study of the Liver. 2012;32(9):1382–90.

    Article  CAS  Google Scholar 

  25. Kondoh N, Imazeki N, Arai M, Hada A, Hatsuse K, Matsuo H, et al. Activation of a system a amino acid transporter, ATA1/SLC38A1, in human hepatocellular carcinoma and preneoplastic liver tissues. Int J Oncol. 2007;31(1):81–7.

    CAS  PubMed  Google Scholar 

  26. Yao HR, Liu J, Plumeri D, Cao YB, He T, Lin L, et al. Lipotoxicity in HepG2 cells triggered by free fatty acids. Am J Transl Res. 2011;3(3):284–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu K, Czaja MJ. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 2013;20(1):3–11.

    Article  PubMed  Google Scholar 

  28. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19(21):5720–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells. Oncogene. 2016;5:e189.

    Article  CAS  Google Scholar 

  30. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, et al. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):1131–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology (Baltimore Md). 2010;51(2):679–89.

    Article  CAS  Google Scholar 

  32. Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010;11(6):467–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tatsumi T, Takayama K, Ishii S, Yamamoto A, Hara T, Minami N, et al. Forced lipophagy reveals that lipid droplets are required for early embryonic development in mouse. Development (Cambridge, England). 2018;145(4):dev161893.

    Article  Google Scholar 

  34. Lam T, Harmancey R, Vasquez H, Gilbert B, Patel N, Hariharan V, et al. Reversal of intramyocellular lipid accumulation by lipophagy and a p62-mediated pathway. Cell Death Discov. 2016;2:16061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lei T, Ling X. IGF-1 promotes the growth and metastasis of hepatocellular carcinoma via the inhibition of proteasome-mediated cathepsin B degradation. World J Gastroenterol. 2015;21(35):10137–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jia S, Du Z, Jiang H, Huang X, Chen Z, Chen N. Daintain/AIF-1 accelerates the activation of insulin-like growth factor-1 receptor signaling pathway in HepG2 cells. Oncol Rep. 2015;34(1):511–7.

    Article  CAS  PubMed  Google Scholar 

  37. Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB. Diabetes increases the risk of hepatocellular carcinoma in the United States: a population based case control study. Gut. 2005;54(4):533–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang J, Waldron RT, Su HY, Moro A, Chang HH, Eibl G, et al. Insulin promotes proliferation and fibrosing responses in activated pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol. 2016;311(4):G675–87.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Feng C, Li D, Jiang L, Liu X, Li Q, Geng C, et al. Citreoviridin induces triglyceride accumulation in hepatocytes through inhibiting PPAR-alpha in vivo and in vitro. Chem Biol Interact. 2017;273:212–8.

    Article  CAS  PubMed  Google Scholar 

  40. Schoonjans K, Staels B, Auwerx J. The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta. 1996;1302(2):93–109.

    Article  CAS  PubMed  Google Scholar 

  41. Grygiel-Gorniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutr J. 2014;13:17.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;62(3):720–33.

    Article  CAS  PubMed  Google Scholar 

  43. Degenhardt T, Matilainen M, Herzig KH, Dunlop TW, Carlberg C. The insulin-like growth factor-binding protein 1 gene is a primary target of peroxisome proliferator-activated receptors. J Biol Chem. 2006;281(51):39607–19.

    Article  CAS  PubMed  Google Scholar 

  44. Reece M, Prawitt D, Landers J, Kast C, Gros P, Housman D, et al. Functional characterization of ORCTL2 - an organic cation transporter expressed in the renal proximal tubules. FEBS Lett. 1998;433(3):245–50.

    Article  CAS  PubMed  Google Scholar 

  45. Yamada HY, Gorbsky GJ. Tumor suppressor candidate TSSC5 is regulated by UbcH6 and a novel ubiquitin ligase RING105. Oncogene. 2006;25(9):1330–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We are grateful for partial financial support through three Grants-in-Aid for Scientific Research from the Japanese Society for the Promotion of Science (JSPS) for Research Activity Start-up (No. 24890170), Young Scientific Research (B) (No. 26860109) and Scientific Research (C) (No. 16 K08373), as well as a grant from the Takeda Science Foundation. S. Ohtsuki is a full professor at Kumamoto University and is also a director of Proteomedix Frontiers. This study was not supported by the company, and its position at the company did not influence the design of the study, the collection of the data, the analysis or interpretation of the data, the decision to submit the manuscript for publication, or the writing of the manuscript and did not present any financial conflicts. The other authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Contributions

S. Ito, G. Honda. and S. Ohtsuki contributed to the study design. S. Ito, G.Honda, Y. Fujino, S. Ogata, M. Hirayama-kurogi and S.Ohtsuki conducted experiments and performed data analysis. S. Ito and S. Ohtsuki wrote the manuscript. All authors gave final approval for the manuscript to be published.

Corresponding author

Correspondence to Sumio Ohtsuki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, S., Honda, G., Fujino, Y. et al. Knockdown of Orphan Transporter SLC22A18 Impairs Lipid Metabolism and Increases Invasiveness of HepG2 Cells. Pharm Res 36, 39 (2019). https://doi.org/10.1007/s11095-018-2565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2565-4

KEY WORDS

Navigation