Skip to main content
Log in

Quantitative Structure-Property Relationship for pH-Triggered Drug Release Performance of Acid-Responsive Four/Six-Arms Star Polymeric Micelles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The pH-responsive copolymer micelles are widely used as carriers in drug delivery system, but there are few micro-level mechanistically explorations on the pH-triggered drug release. Here we elucidate the relationship between drug release behavior of four/six-arms star copolymer micelles and the copolymer structures.

Method

The net cumulative drug release percentage (En) was taken as the dependent variables, block unit autocorrelation descriptors as independent variables. The quantitative structure-property relationship models of drug release from block copolymers were developed at pH 7.4 and 5.0 of two periods (stage I: 0~12 h, stage II: 12~96 h).

Results

The models built are of good fitting ability, internal predictive ability, stability and statistically significance. Drug diffusion is mainly influenced by the intra-block force, and micellar erosion by inter-block force. At pH 5.0, lowest unoccupied molecular orbital energy of copolymer unit is the main factor influencing the En. Stage I of drug release is affected by hydrophobic property and stage II by regional polar of copolymer molecules.

Conclusion

The models present good performance, factors affecting drug release behavior at different pH conditions can offer guidance for the design of copolymer structures to control the drug release behavior of micelles in a targeted and quantitatively way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

δ :

Standardized residual of the sample to be predicted

σ :

Standard residual of the samples

BUA:

Block unit autocorrelation

E n :

Net cumulative drug release percentage during a stage

E r :

Cumulative drug release percentage at time points

F :

Value of F in F-test

f k :

Polymeric molecular characteristic

f ki :

Characteristic value of unit i

h* :

Critical value of leverage h

h i :

Leverage of the ith sample to be predicted

l :

Block unit interval

LUMO:

Lowest unoccupied molecular orbital

m :

Number of samples in the training set

n :

Number of query samples

N :

Unit counts in the summation

p :

Possibility

q :

Total number of descriptors contained in the models

q’ :

Number of descriptors plus one

Q 2 LOO-CV :

Leave-one-out cross-validation correlation coefficient

QSPR:

Quantitative structure-property relationship

R 2 :

Multiple correlation coefficient

R i 2 :

Multiple correlation coefficient in a regression analysis between independent variables xi and other independent variables

R 2 Y-rand, Q 2 Y-rand :

Average values of R2 or Q2LOO-CV in Y-randomization test

s :

Standardized error

x i :

Characteristic matrix of the ith sample to be predicted

X T :

Transpose of matrix X

References

  1. Chen Z, Zhang P, Cheetham AG, Moon JH, Moxley JW, Lin Y, et al. Controlled release of free doxorubicin from peptide–drug conjugates by drug loading. J Control Release. 2014;191:123–30.

    Article  CAS  Google Scholar 

  2. Nie SY, Lin WJ, Yao N, Guo XD, Zhang LJ. Drug release from pH-sensitive polymeric micelles with different drug distributions: insight from coarse-grained simulations. ACS Appl Mater Interfaces. 2014;6:17668–78.

    Article  CAS  Google Scholar 

  3. Chen H, Ruckenstein E. Formation and degradation of multicomponent multicore micelles: insights from dissipative particle dynamics simulations. Langmuir. 2013;29:5428–34.

    Article  CAS  Google Scholar 

  4. Rodríguez-Hidalgo M-R, Soto-Figueroa C, Vicente L. Mesoscopic simulation of the drug release mechanism on the polymeric vehicle P(ST-DVB) in an acid environment. Soft Matter. 2011;7:8224.

    Article  Google Scholar 

  5. Wang Y, Huang J-J, Zhou N, Cao D-S, Dong J, Li H-X. Incorporating PLS model information into particle swarm optimization for descriptor selection in QSAR/QSPR. J Chemom. 2015;29:627–36.

    Article  CAS  Google Scholar 

  6. Kale SP, Garg S. Prediction of the mutual diffusion coefficient for controlled drug delivery devices. Comput Chem Eng. 2012;39:186–98.

    Article  CAS  Google Scholar 

  7. Gafourian T, Safari A, Adibkia K, Parviz F, Nokhodchi A. A drug release study from hydroxypropylmethylcellulose (HPMC) matrices using QSPR modeling. J Pharm Sci. 2007;96:3334–51.

    Article  CAS  Google Scholar 

  8. Pajander J, Korhonen O, Laamanen M, Ryynänen E-L, Grimsey I, van Veen B, et al. Effect of formulation parameters and drug–polymer interactions on drug release from starch acetate matrix tablets. J Pharm Sci. 2009;98:3676–90.

    Article  CAS  Google Scholar 

  9. Huang X, Xiao Y, Lang M. Self-assembly of pH-sensitive mixed micelles based on linear and star copolymers for drug delivery. J Colloid Interface Sci. 2011;364:92–9.

    Article  CAS  Google Scholar 

  10. Cao W, Zhu L. Synthesis and unimolecular micelles of amphiphilic dendrimer-like star polymer with various functional surface groups. Macromolecules. 2011;44:1500–12.

    Article  CAS  Google Scholar 

  11. Liu J, Huang W, Pang Y, Zhu X, Zhou Y, Yan D. Self-assembled micelles from an amphiphilic Hyperbranched copolymer with polyphosphate arms for drug delivery. Langmuir. 2010;26:10585–92.

    Article  CAS  Google Scholar 

  12. Yang YQ, Zhao B, Li ZD, Lin WJ, Zhang CY, Guo XD, et al. pH-sensitive micelles self-assembled from multi-arm star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) for controlled anticancer drug delivery. Acta Biomater. 2013;9:7679–90.

    Article  CAS  Google Scholar 

  13. Lin WJ, Nie SY, Chen Q, Qian Y, Wen XF, Zhang LJ. Structure-property relationship of pH-sensitive (PCL) 2 (PDEA- b -PPEGMA) 2 micelles: experiment and DPD simulation. AIChE J. 2014;60:3634–46.

    Article  CAS  Google Scholar 

  14. Lin W, Nie S, Zhong Q, Yang Y, Cai C, Wang J, et al. Amphiphilic miktoarm star copolymer (PCL)3-(PDEAEMA-b-PPEGMA)3 as pH-sensitive micelles in the delivery of anticancer drug. J Mater Chem B. 2014;2:4008.

    Article  CAS  Google Scholar 

  15. Katritzky AR, Sild S, Karelson M. Correlation and prediction of the refractive indices of polymers by QSPR. J Chem Inf Comput Sci. 1998;38:1171–6.

    Article  CAS  Google Scholar 

  16. García-Domenech R, de Julián-Ortiz JV. Prediction of indices of refraction and glass transition temperatures of linear polymers by using graph theoretical indices. J Phys Chem B. 2002;106:1501–7.

    Article  Google Scholar 

  17. Wu W, Zhang R, Peng S, Li X, Zhang L. QSPR between molecular structures of polymers and micellar properties based on block unit autocorrelation (BUA) descriptors. Chemom Intell Lab Syst. 2016;157:7–15.

    Article  Google Scholar 

  18. Karcher W, Devillers J, editors. Practical applications of quantitative structure-activity relationships (QSAR) in environmental chemistry and toxicology, vol. 1. New York: Springer Science & Business Media; 1990.

  19. Yousefinejad S, Hemmateenejad B, Mehdipour AR. New autocorrelation QTMS-based descriptors for use in QSAM of peptides. J Iran Chem Soc. 2012;9:569–77.

    Article  CAS  Google Scholar 

  20. Imran M, Baig AQ, Ali H. On molecular topological properties of hex-derived networks. J Chemom. 2016;30:121–9.

    Article  CAS  Google Scholar 

  21. Todeschini R, Consonni V. Molecular Descriptors for Chemoinformatics: Volume I: Alphabetical Listing / Volume II: Appendices, References. New York: Wiley; 2009.

    Book  Google Scholar 

  22. Karcher W, Devillers J. Practical applications of quantitative structure-activity relationships (QSAR) in environmental chemistry and toxicology. New York: Springer Science & Business Media; 1990.

    Google Scholar 

  23. Mo YZ, Xu JC. Studies on mechanical properties and optimization model of PI/SiO2 nanocomposite based on materials studio. Adv Mater Res. 2014;1049–1050:54–7.

    Article  Google Scholar 

  24. Niazi A, Leardi R. Genetic algorithms in chemometrics. J Chemom. 2012;26:345–51.

    Article  CAS  Google Scholar 

  25. Leardi R. Genetic algorithms in chemometrics and chemistry: a review. J Chemom. 2001;15:559–69.

    Article  CAS  Google Scholar 

  26. Lei B, Ma Y, Li J, Liu H, Yao X, Gramatica P. Prediction of the adsorption capability onto activated carbon of a large data set of chemicals by local lazy regression method. Atmos Environ. 2010;44:2954–60.

    Article  CAS  Google Scholar 

  27. Li J, Lei B, Liu H, Li S, Yao X, Liu M, et al. QSAR study of malonyl-CoA decarboxylase inhibitors using GA-MLR and a new strategy of consensus modeling. J Comput Chem. 2008;29:2636–47.

    Article  CAS  Google Scholar 

  28. Wang J, Krudy G, Xie X-Q, Wu C, Holland G. Genetic algorithm-optimized QSPR models for bioavailability, protein binding, and urinary excretion. J Chem Inf Model. 2006;46:2674–83.

    Article  CAS  Google Scholar 

  29. Gramatica P, Giani E, Papa E. Statistical external validation and consensus modeling: a QSPR case study for Koc prediction. J Mol Graph Model. 2007;25:755–66.

    Article  CAS  Google Scholar 

  30. Gramatica P, Pilutti P, Papa E. Validated QSAR prediction of OH tropospheric degradation of VOCs: splitting into training−test sets and consensus modeling. J Chem Inf Comput Sci. 2004;44:1794–802.

    Article  CAS  Google Scholar 

  31. Guan P, Doytchinova IA, Walshe VA, Borrow P, Flower DR. Analysis of peptide−protein binding using amino acid descriptors: prediction and experimental verification for human histocompatibility complex HLA-A*0201. J Med Chem. 2005;48:7418–25.

    Article  CAS  Google Scholar 

  32. Eriksson L, Jaworska J, Worth AP, Cronin MTD, McDowell RM, Gramatica P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect. 2003;111:1361–75.

    Article  CAS  Google Scholar 

  33. Tropsha A, Gramatica P, Gombar V. The importance of being Earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci. 2003;22:69–77.

    Article  CAS  Google Scholar 

  34. Kiralj R, Ferreira MMC. Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J Braz Chem Soc. 2009;20:55.

    Article  Google Scholar 

  35. Dearden JC, Cronin MTD, Kaiser KLE. How not to develop a quantitative structure–activity or structure–property relationship (QSAR/QSPR). SAR QSAR Environ Res. 2009;20:241–66.

    Article  CAS  Google Scholar 

  36. Roy K, Kabir H. QSPR with extended topochemical atom (ETA) indices, 3: modeling of critical micelle concentration of cationic surfactants. Chem Eng Sci. 2012;81:169–78.

    Article  CAS  Google Scholar 

  37. Rücker C, Rücker G, Meringer M. y-randomization and its variants in QSPR/QSAR. J Chem Inf Model. 2007;47:2345–57.

    Article  Google Scholar 

  38. Wehrens R, Putter H, Buydens LM. The bootstrap: a tutorial. Chemom Intell Lab Syst. 2000;54:35–52.

    Article  CAS  Google Scholar 

  39. Gharagheizi F, Eslamimanesh A, Ilani-Kashkouli P, Mohammadi AH, Richon D. QSPR molecular approach for representation/prediction of very large vapor pressure dataset. Chem Eng Sci. 2012;76:99–107.

    Article  CAS  Google Scholar 

  40. Peppas NA, Sahlin JJ. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57:169–72.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-juan Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wen, Ly., Wu, Ws. et al. Quantitative Structure-Property Relationship for pH-Triggered Drug Release Performance of Acid-Responsive Four/Six-Arms Star Polymeric Micelles. Pharm Res 36, 20 (2019). https://doi.org/10.1007/s11095-018-2549-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2549-4

KEY WORDS

Navigation