Skip to main content
Log in

Identification of D-Amino Acids in Light Exposed mAb Formulations

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

We previously demonstrated that D-amino acids can form as a result of photo-irradiation of a monoclonal antibody (mAb) at both λ = 254 nm and λ > 295 nm (λmax = 305 nm), likely via reversible hydrogen transfer reactions of intermediary thiyl radicals. Here, we investigate the role of various excipients (sucrose, glucose, L-Arg, L-Met and L-Leu) on D-amino acid formation, and specifically the distribution of D-amino acids in mAb monomers and aggregates present after light exposure.

Methods

The mAb-containing formulations were photo-irradiated at λ = 254 nm and λmax = 305 nm, followed by fractionation of aggregate and monomer fractions using size exclusion chromatography. These aggregate and monomer fractions were subjected to hydrolysis and subsequent amino acid analysis.

Results

Both aggregate and monomer fractions collected from all formulations showed the formation of D-Glu and D-Val, whereas the formation of D-Ala was limited to the aggregate fraction collected from an L-Arg-containing formulation. Interestingly, quantitative analysis revealed higher yields of D-amino acids in the L-Arg-containing formulation.

Conclusions

Generally, D-amino acids accumulated to similar extents in monomers and aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

Abbreviations

BMS:

Bis-(2-mercaptoethyl) sulfone

DAAO:

D-amino acid oxidase

HPLC:

High pressure liquid chromatography

IAA:

Iodoacetamide

IgG:

Immunoglobulin G

mAb:

Monoclonal antibody

Q-TOF:

Quadrupole time-of-flight

SEC:

Size exclusion chromatography

UPLC-MS:

Ultra pressure liquid chromatography- mass spectrometry

UV:

Ultraviolet

References

  1. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–75.

    Article  Google Scholar 

  2. Kerwin BA, Remmele RL. Protect from light: Photodegradation and protein biologics. J Pharm Sci. 2007;96(6):1468–79.

    Article  CAS  Google Scholar 

  3. Mason BD, Schöneich C, Kerwin BA. Effect of pH and light on aggregation and conformation of an IgG1 mAb. Mol Pharm. 2012;9(4):774–90.

    Article  CAS  Google Scholar 

  4. Bee JS, Randolph TW, Carpenter JF, Bishop SM, Dimitrova MN. Effects of surfaces and leachables on the stability of biopharmaceuticals. J Pharm Sci. 2011;100(10):4158–70.

    Article  CAS  Google Scholar 

  5. Creed D. The photophysics and photochemistry of the near-Uv absorbing amino-acids .1. Tryptophan and its simple derivatives. Photochem Photobiol. 1984;39(4):537–62.

    Article  CAS  Google Scholar 

  6. Creed D. The photophysics and photochemistry of the near-Uv absorbing amino-acids .2. Tyrosine and its simple derivatives. Photochem Photobiol. 1984;39(4):563–75.

    Article  CAS  Google Scholar 

  7. Creed D. The photophysics and photochemistry of the near-Uv absorbing amino-acids .3. Cystine and its simple derivatives. Photochem Photobiol. 1984;39(4):577–83.

    Article  CAS  Google Scholar 

  8. Pattison DI, Rahmanto AS, Davies MJ. Photo-oxidation of proteins. Photochem Photobiol Sci. 2012;11(1):38–53.

    Article  CAS  Google Scholar 

  9. Agon VV, Bubb WA, Wright A, Hawkins CL, Davies MJ. Sensitizer-mediated photooxidation of histidine residues: evidence for the formation of reactive side-chain peroxides. Free Radic Biol Med. 2006;40(4):698–710.

    Article  CAS  Google Scholar 

  10. Shen HR, Spikes JD, Kopeckova P, Kopecek J. Photodynamic crosslinking of proteins .2. Photocrosslinking of a model protein-ribonuclease A. J Photochem Photobiol B. 1996;35(3):213–9.

    Article  CAS  Google Scholar 

  11. Shen HR, Spikes JD, Smith CJ, Kopecek J. Photodynamic cross-linking of proteins - IV. Nature of the His-His bond(s) formed in the rose bengal-photosensitized cross-linking of N-benzoyl-L-histidine. J Photochem Photobiol A. 2000;130(1):1–6.

    Article  Google Scholar 

  12. Lei M, Carcelen T, Walters BT, Zamiri C, Quan C, Hu Y, et al. Structure-based correlation of light-induced histidine reactivity in a model protein. Anal Chem. 2017;89(13):7225–31.

    Article  CAS  Google Scholar 

  13. Haywood J, Mozziconacci O, Allegre KM, Kerwin BA, Schöneich C. Light-induced conversion of Trp to Gly and Gly hydroperoxide in IgG1. Mol Pharm. 2013;10(3):1146–50.

    Article  CAS  Google Scholar 

  14. Mozziconacci O, Williams TD, Kerwin BA, Schöneich C. Reversible intramolecular hydrogen transfer between protein cysteine thiyl radicals and alpha C-H bonds in insulin: control of selectivity by secondary structure. J Phys Chem B. 2008;112(49):15921–32.

    Article  CAS  Google Scholar 

  15. Mozziconacci O, Kerwin BA, Schöneich C. Exposure of a monoclonal antibody, IgG1, to UV-light leads to protein dithiohemiacetal and thioether cross-links: a role for thiyl radicals? Chem Res Toxicol. 2010;23(8):1310–2.

    Article  CAS  Google Scholar 

  16. Mozziconacci O, Haywood J, Gorman EM, Munson E, Schöneich C. Photolysis of recombinant human insulin in the solid state: formation of a dithiohemiacetal product at the C-terminal disulfide bond. Pharm Res. 2012;29(1):121–33.

    Article  CAS  Google Scholar 

  17. Steinmann D, Mozziconacci O, Bommana R, Stobaugh JF, Wang YJ, Schöneich C. Photodegradation pathways of protein disulfides: human growth hormone. Pharm Res. 2017;34(12):2756–78.

    Article  CAS  Google Scholar 

  18. Qi P, Volkin DB, Zhao H, Nedved ML, Hughes R, Bass R, et al. Characterization of the photodegradation of a human IgG1 monoclonal antibody formulated as a high-concentration liquid dosage form. J Pharm Sci. 2009;98(9):3117–30.

    Article  CAS  Google Scholar 

  19. Sreedhara A, Lau K, Li C, Hosken B, Macchi F, Zhan D, et al. Role of surface exposed tryptophan as substrate generators for the antibody catalyzed water oxidation pathway. Mol Pharm. 2013;10(1):278–88.

    Article  CAS  Google Scholar 

  20. Bane J, Mozziconacci O, Yi L, Wang YJ, Sreedhara A, Schoneich C. Photo-oxidation of IgG1 and model peptides: detection and analysis of triply oxidized his and Trp side chain cleavage products. Pharm Res. 2017;34(1):229–42.

    Article  CAS  Google Scholar 

  21. Mallaney M, Wang SH, Sreedhara A. Effect of ambient light on monoclonal antibody product quality during small-scale mammalian cell culture process in clear glass bioreactors. Biotechnol Prog. 2014;30(3):562–70.

    Article  CAS  Google Scholar 

  22. Sreedhara A, Yin J, Joyce M, Lau K, Wecksler AT, Deperalta G, et al. Effect of ambient light on IgG1 monoclonal antibodies during drug product processing and development. Eur J Pharm Biopharm. 2016;100:38–46.

    Article  CAS  Google Scholar 

  23. Liu HC, May K. Disulfide bond structures of IgG molecules structural variations, chemical modifications and possible impacts to stability and biological function. Mabs-Austin. 2012;4(1):17–23.

    Article  CAS  Google Scholar 

  24. Mozziconacci O, Sharov V, Williams TD, Kerwin BA, Schöneich C. Peptide cysteine thiyl radicals abstract hydrogen atoms from surrounding amino acids: the photolysis of a cystine containing model peptide. J Phys Chem B. 2008;112(30):9250–7.

    Article  CAS  Google Scholar 

  25. Zhou S, Mozziconacci O, Kerwin BA, Schöneich C. The photolysis of disulfide bonds in IgG1 and IgG2 leads to selective intramolecular hydrogen transfer reactions of cysteine Thiyl radicals, probed by covalent H/D exchange and RPLC-MS/MS analysis. Pharm Res. 2013;30(5):1291–9.

    Article  CAS  Google Scholar 

  26. Mozziconacci O, Kerwin BA, Schöneich C. Photolysis of an intrachain peptide disulfide bond: primary and secondary processes, formation of H2S, and hydrogen transfer reactions. J Phys Chem B. 2010;114(10):3668–88.

    Article  CAS  Google Scholar 

  27. Mozziconacci O, Kerwin BA, Schöneich C. Reversible hydrogen transfer between cysteine thiyl radical and glycine and alanine in model peptides: covalent H/D exchange, radical-radical reactions, and L- to D-Ala conversion. J Phys Chem B. 2010;114(19):6751–62.

    Article  CAS  Google Scholar 

  28. Mozziconacci O, Kerwin BA, Schöneich C. Reversible hydrogen transfer reactions of cysteine thiyl radicals in peptides: the conversion of cysteine into dehydroalanine and alanine, and of alanine into dehydroalanine. J Phys Chem B. 2011;115(42):12287–305.

    Article  CAS  Google Scholar 

  29. Nauser T, Casi G, Koppenol WH, Schöneich C. Reversible intramolecular hydrogen transfer between cysteine thiyl radicals and glycine and alanine in model peptides: absolute rate constants derived from pulse radiolysis and laser flash photolysis. J Phys Chem B. 2008;112(47):15034–44.

    Article  CAS  Google Scholar 

  30. Davies MJ. Protein oxidation and peroxidation. Biochem J. 2016;473:805–25.

    Article  CAS  Google Scholar 

  31. Leinisch F, Mariotti M, Rykaer M, Lopez-Alarcon C, Hagglund P, Davies MJ. Peroxyl radical- and photo-oxidation of glucose 6-phosphate dehydrogenase generates cross-links and functional changes via oxidation of tyrosine and tryptophan residues. Free Radic Biol Med. 2017;112:240–52.

    Article  CAS  Google Scholar 

  32. Fuentes-Lemus E, Silva E, Leinisch F, Dorta E, Lorentzen LG, Davies MJ, et al. Alpha- and beta-casein aggregation induced by riboflavin-sensitized photo-oxidation occurs via di-tyrosine cross-links and is oxygen concentration dependent. Food Chem. 2018;256:119–28.

    Article  CAS  Google Scholar 

  33. Mozziconacci O, Williams TD, Schöneich C. Intramolecular hydrogen transfer reactions of thiyl radicals from glutathione: formation of carbon-centered radical at Glu, Cys, and Gly. Chem Res Toxicol. 2012;25(9):1842–61.

    Article  CAS  Google Scholar 

  34. Mozziconacci O, Schöneich C. Sequence-specific formation of d-amino acids in a monoclonal antibody during light exposure. Mol Pharm. 2014;11(11):4291–7.

    Article  CAS  Google Scholar 

  35. Rauk A, Yu D, Armstrong DA. Oxidative damage to and by cysteine in proteins: an ab initio study of the radical structures, C-H, S-H, and C-C bond dissociation energies, and transition structures for H abstraction by thiyl radicals. J Am Chem Soc. 1998;120(34):8848–55.

    Article  CAS  Google Scholar 

  36. Jonsson M, Wayner DDM, Armstrong DA, Yu DK, Rauk A. On the thermodynamics of peptide oxidation: anhydrides of glycine and alanine. J Chem Soc Perk T 2. 1998(9):1967–1972.

  37. Rauk A, Yu D, Taylor J, Shustov GV, Block DA, Armstrong DA. Effects of structure on C-alpha-H bond enthalpies of amino acid residues: relevance to H transfers in enzyme mechanisms and in protein oxidation. Biochemistry-Us. 1999;38(28):9089–96.

    Article  CAS  Google Scholar 

  38. Reid DL, Armstrong DA, Rauk A, von Sonntag C. H-atom abstraction by thiyl radicals from peptides and cyclic dipeptides. A theoretical study of reaction rates. Phys Chem Chem Phys. 2003;5(18):3994–9.

    Article  CAS  Google Scholar 

  39. Chi EY, Krishnan S, Randolph TW, Carpenter JF. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res. 2003;20(9):1325–36.

    Article  CAS  Google Scholar 

  40. Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev. 2011;63(13):1118–59.

    Article  CAS  Google Scholar 

  41. Thakkar SV, Joshi SB, Jones ME, Sathish HA, Bishop SM, Volkin DB, et al. Excipients differentially influence the conformational stability and pretransition dynamics of two IgG1 monoclonal antibodies. J Pharm Sci-Us. 2012;101(9):3062–77.

    Article  CAS  Google Scholar 

  42. Covington AK, Paabo M, Robinson RA, Bates RG. Use of glass electrode in deuterium oxide and relation between standardized Pd (Pad) scale and operational Ph in heavy water. Anal Chem. 1968;40(4):700−+.

  43. Weber G. Fluorescence-polarization spectrum and electronic-energy transfer in proteins. Biochem J. 1960;75:345–52.

    Article  CAS  Google Scholar 

  44. Donovan JW, Laskowski M, Scheraga HA. Effects of charged groups on chromophores of lysozyme and of amino acids. J Am Chem Soc. 1961;83(12):2686-&.

  45. Juszczak LJ, Eisenberg AS. The color of cation-pi interactions: subtleties of amine-tryptophan interaction energetics allow for radical-like visible absorbance and fluorescence. J Am Chem Soc. 2017;139(24):8302–11.

    Article  CAS  Google Scholar 

  46. Molla G, Piubelli L, Volontè F, Pilone MS. Enzymatic detection of D-amino acids. In: Pollegioni L, Servi S, editors. Unnatural amino acids methods in molecular biology (Methods and protocols). New York: Humana Press; 2012. p. 273–289.

    Google Scholar 

  47. Sacchi S, Rosini E, Caldinelli L, Pollegioni L. Biosensors for D-amino acid detection. In: Pollegioni L, Servi S, editors. Unnatural amino acids methods in molecular biology (Methods and protocols). New York: Humana Press; 2012. p. 313–324.

    Google Scholar 

  48. Tedeschi G, Pollegioni L, Negri A. Assays of d-amino acid oxidases. In: Pollegioni L, Servi S, editors. Unnatural amino acids methods in molecular biology (Methods and protocols). New York: Humana Press; 2012. p. 381–395.

    Google Scholar 

  49. Fountoulakis M, Lahm HW. Hydrolysis and amino acid composition analysis of proteins. J Chromatogr A. 1998;826(2):109–34.

    Article  CAS  Google Scholar 

  50. Fujii N. D-amino acid in elderly tissues. Biol Pharm Bull. 2005;28(9):1585–9.

    Article  CAS  Google Scholar 

  51. Tomiyama T, Asano S, Furiya Y, Shirasawa T, Endo N, Mori H. Racemization of Asp23 residue affects the aggregation properties of Alzheimer amyloid beta protein analogues. J Biol Chem. 1994;269(14):10205–8.

    CAS  PubMed  Google Scholar 

  52. Huang L, Lu X, Gough PC, De Felippis MR. Identification of racemization sites using deuterium labeling and tandem mass spectrometry. Anal Chem. 2010;82(15):6363–9.

    Article  CAS  Google Scholar 

  53. Tao Y, Julian RR. Identification of amino acid epimerization and isomerization in crystallin proteins by tandem LC-MS. Anal Chem. 2014;86(19):9733–41.

    Article  CAS  Google Scholar 

  54. Lyon YA, Sabbah GM, Julian RR. Identification of sequence similarities among isomerization hotspots in crystallin proteins. J Proteome Res. 2017;16(4):1797–805.

    Article  CAS  Google Scholar 

  55. Amano M, Hasegawa J, Kobayashi N, Kishi N, Nakazawa T, Uchiyama S, et al. Specific racemization of heavy-chain cysteine-220 in the hinge region of immunoglobulin gamma 1 as a possible cause of degradation during storage. Anal Chem. 2011;83(10):3857–64.

    Article  CAS  Google Scholar 

  56. Zhang Q, Flynn GC. Cysteine racemization on IgG heavy and light chains. J Biol Chem. 2013;288(48):34325–35.

    Article  CAS  Google Scholar 

  57. Schöneich C. Mechanisms of protein damage induced by cysteine thiyl radical formation. Chem Res Toxicol. 2008;21(6):1175–9.

    Article  Google Scholar 

  58. Schöneich C. Thiyl radicals and induction of protein degradation. Free Radic Res. 2016;50(2):143–9.

    Article  Google Scholar 

  59. Manikwar P, Majumdar R, Hickey JM, Thakkar SV, Samra HS, Sathish HA, et al. Correlating excipient effects on conformational and storage stability of an IgG1 monoclonal antibody with local dynamics as measured by hydrogen/deuterium-exchange mass spectrometry. J Pharm Sci. 2013;102(7):2136–51.

    Article  CAS  Google Scholar 

  60. Arakawa T, Timasheff SN. Stabilization of protein structure by sugars. Biochemistry-Us. 1982;21(25):6536–44.

    Article  CAS  Google Scholar 

  61. Lee JC, Timasheff SN. The stabilization of proteins by sucrose. J Biol Chem. 1981;256(14):7193–201.

    CAS  PubMed  Google Scholar 

  62. Faghihi H, Vatanara A, Najafabadi AR, Ramezani V, Gilani K. The use of amino acids to prepare physically and conformationally stable spray-dried IgG with enhanced aerosol performance. Int J Pharm. 2014;466(1–2):163–71.

    Article  CAS  Google Scholar 

  63. Emami F, Vatanara A, Najafabadi AR, Kim Y, Park EJ, Sardari S, et al. Effect of amino acids on the stability of spray freeze-dried immunoglobulin G in sugar-based matrices. Eur J Pharm Sci. 2018;119:39–48.

    Article  CAS  Google Scholar 

  64. Nauser T, Pelling J, Schöneich C. Thiyl radical reaction with amino acid side chains: rate constants for hydrogen transfer and relevance for posttranslational protein modification. Chem Res Toxicol. 2004;17(10):1323–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schöneich.

Electronic supplementary material

ESM 1

(DOCX 1767 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bommana, R., Subelzu, N., Mozziconacci, O. et al. Identification of D-Amino Acids in Light Exposed mAb Formulations. Pharm Res 35, 238 (2018). https://doi.org/10.1007/s11095-018-2520-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2520-4

KEY WORDS

Navigation