Formulation of Natural Oil Nano-Emulsions for the Topical Delivery of Clofazimine, Artemisone and Decoquinate

Abstract

Purpose

The aim of this study was to formulate nano-emulsions comprising natural oils and the active pharmaceutical ingredients (APIs) clofazimine (CLF), artemisone (ATM) and decoquinate (DQ) in order to determine effectiveness of the nano-emulsions for topical delivery of the APIs. The APIs alone do not possess suitable physicochemical properties for topical drug delivery.

Methods

Nano-emulsions were formulated with olive and safflower oils encapsulating the APIs. Skin diffusion and tape stripping studies were performed. By using the lactate dehydrogenase (LDH) assay, in vitro toxicity studies were carried out on immortalized human keratinocytes (HaCaT) cell line to determine cytotoxicities due to the APIs and the nano-emulsions incorporating the APIs.

Results

The nano-emulsions were effective in delivering the APIs within the stratum corneum-epidermis and the epidermis-dermis, were non-cytotoxic towards HaCaT cell lines (p < 0.05) and inhibited Mycobacterium tuberculosis in vitro.

Conclusion

Natural oil nano-emulsions successfully deliver CLF, ATM and DQ and in principle could be used as supplementary topical treatment of cutaneous tuberculosis (CTB).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

7H9/OADC :

Middlebrook 7HP Broth Base and Middlebrook AODC growth supplement

ANOVA :

Analysis of variance

API :

Active pharmaceutical ingredient

ATM :

Artemisone

attB :

Phage attachment site

CFU :

Colony-forming units

CLF :

Clofazimine

CTB :

Cutaneous tuberculosis

DMEM :

Dulbecco’s modified eagle medium

DMSO :

Dimethyl sulfoxide

DQ :

Decoquinate

ED :

Epidermis-dermis

EDTA :

Trypsin-Versene®

EE% :

Entrapment efficiency

FBS :

Fetal bovine serum

GAST/Fe :

Glycerol-alanine-salts containing iron

GFP :

Green fluorescent protein

HaCaT :

Immortalized human keratinocyte cells

HPLC :

High performance liquid chromatography

Hyg 50 :

Hygromycin B resistance gene

INH :

Isoniazid

LDH :

Lactate dehydrogenase

LOD :

Limit of detection

Log D :

Octanol-water distribution coefficient

LOQ :

Limit of quantitation

M.tb :

Mycobacterium tuberculosis

MDR-TB :

Multidrug-resistant tuberculosis

MIC 90 :

90% Minimum inhibitory concentration

NEAA :

Non-essential amino acids

O :

Olive oil

O1 :

Olive oil nano-emulsion containing clofazimine

O2 :

Olive oil nano-emulsion containing artemisone

O3 :

Olive oil nano-emulsion containing decoquinate

O4 :

Olive oil nano-emulsion containing clofazimine, artemisone and decoquinate

O5 :

Olive oil nano-emulsion placebo

OD 600 :

Optical density reading taken at 600 nm

PBS :

Phosphate buffer solution

Pen/Strep :

Penicillin/Streptomycin

PVDF :

Polyvinylidene fluoride

ROS:

Reactive oxygen species

S :

Safflower oil

S1 :

Safflower oil nano-emulsion containing clofazimine

S2 :

Safflower oil nano-emulsion containing artemisone

S3 :

Safflower oil nano-emulsion containing decoquinate

S4 :

Safflower oil nano-emulsion containing clofazimine, artemisone and decoquinate

S5 :

Safflower oil nano-emulsion placebo

SCE :

Stratum corneum-epidermis

TB :

Tuberculosis

References

  1. 1.

    Hurtley S, Ash C. Tuberculosis & malaria. Landscapes of infection Introduction Science. 2010;328(841):180.

    Google Scholar 

  2. 2.

    WHO Global Tuberculosis Report 2017; 2018 March 3. Available from: http://www.who.int/tb/publications/global_report/en/ [Website].

  3. 3.

    Bravo FG, Gotuzzo E. Cutaneous tuberculosis. Clin Dermatol. 2007;25(2):173–80.

    Article  PubMed  Google Scholar 

  4. 4.

    Van Zyl L, Du Plessis J, Viljoen J. Cutaneous tuberculosis overview and current treatment regimens. Tuberculosis. 2015;95(6):629–38.

    Article  PubMed  Google Scholar 

  5. 5.

    Dey T, Helen G, Shubber C, Cooke G, Ford N. Outcomes of clofazimine for the treatment of drug-resistant tuberculosis: a systematic review and meta-analysis. J Antimicrob Chemother. 2013;68(2):284–93.

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Dooley KE, Obuku EA, Durakovic N, Belitsky V, Mitnick C, Nuermberger V. World Health Organization group 5 drugs for the treatment of drug-resistant tuberculosis: unclear efficacy or untapped potential? J Infect Dis. 2013;207:1352–8.

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    WHO. Tuberculosis Global Facts; 2017 August 29. Available from: www.who.int/tb/publications/2011/factsheet_tb_2011.pdf [Website].

  8. 8.

    Reddy V, O’Sullivan J, Gangadharam P. Antimycobacterial activities of riminophenazines. J Antimicrob Chemother. 1999;43:615–23.

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Cholo M, Steel H, Fourie P, Germishuizen WA, Anderson R. Clofazimine: current status and future prospects. J Antimicrob Chemother. 2012;2012(67):290–8.

    Article  CAS  Google Scholar 

  10. 10.

    Jagannath C, Reddy M, Kailasam S, O’Sullivan JF, Gangadharam PR. Chemotherapeutic activity of clofazimine and its analogues against Mycobacterium tuberculosis. In vitro, intracellular, and in vivo studies. Am J Respir Crit Care Med. 1995;151:1083–6.

    PubMed  CAS  Google Scholar 

  11. 11.

    Guiguemde WA, Hunt NH, Guo J, Marciano A, Haynes RK, Clark J, et al. Treatment of murine cerebral malaria by Artemisone in combination with conventional antimalarial drugs: Antiplasmodial effects and immune responses. Antimicrob Agents Chemother. 2014;58(8):4745–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Haynes RK, Fugmann B, Stetter J, Rieckmann K, Heilmann HD, Chan HW, et al. Artemisone – a highly active antimalarial drug of the artemisinin class. Angew Chem Int Ed. 2006;45:2082–8.

    Article  CAS  Google Scholar 

  13. 13.

    Williams RB. Tracing the emergence of drug-resistance in coccidian (Eimeria spp.) of commercial broiler flocks medicated with decoquinate for the first time in the United Kingdom. Vet Parasitol. 2006;135:1–14.

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Williams RB. The mode of action of anticoccidial quinolones (6-decyloxy-4-hydroxyquinolone-3-carboxylates) in chickens. Int J Parasitol. 1997;2:101–11.

    Article  Google Scholar 

  15. 15.

    Mikota SK, Plumb DC. Deocquinate; 2015 March 1. Available from: http://www.elephantcare.org/Drugs/decoquin.htm [Website].

  16. 16.

    Haynes RK, Cheu KW, Chan HW, Wong HN, Li KY, Tang MMK, et al. Interactions between artemisinins and other antimalarial drugs in relation to the co-factor model – a unifying proposal for drug action. ChemMedChem. 2012;7:2204–26.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Yano T, Kassovska-Bratinova S, Shin Teh J, Winkler J, Sullivan K, Isaacs A, et al. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase. J Biol Chem. 2011;286:10276–87.

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Nam TG, McNamara CW, Bopp S, Dharia NV, Meister S, Bonamy GMC, et al. A chemical genomic analysis of decoquinate, a plasmodium falciparum cytochrome b inhibitor. ACS Chem Biol. 2011;6:1214–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Proksch E, Brandner JM, Jensen J. The skin: an indispensable barrier. J Exp Dermatol. 2008;17:1063–72.

    Article  Google Scholar 

  20. 20.

    Lam PL, Gambari R. Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries. J Control Release. 2014;178:25–45.

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Colombo P, Cagnani S, Buttini F, Santi, P. Biological in vitro models for absorption by non-oral routes. In: Reference module in chemistry, molecular sciences and chemical engineering, Colombo P, Cagnani S, Buttini F, Santi, P. (eds). Mexico: Elsevier, 2013, p1–19.

  22. 22.

    Naik A, Kalia YN, Guy RH. Transdermal drug delivery: overcoming the skin’s barrier function. Pharm Sci Technolo Today. 2000;3(9):318–26.

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Alkilani AZ, McCrudden MTC, Donnelly RF. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015;7:438–70.

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Wiedersberg S, Guy RH. Transdermal drug delivery: 30+ years of war and still fighting! J Control Release. 2014;190:150–6.

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    USP Pharmacopeia online; 2015 March 1. Available from: http://www.uspbpep.com/usp29/v29240/usp29nf245O_m22310.html [Website].

  26. 26.

    Dunay IR, Chi Chan W, Haynes RK, Sibley LD. Artemisone and artemiside control acute and reactivated toxoplasmosis in a murine model. Antimicrob Agents Chemother. 2009;53(10):4450–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. 27.

    Chembase; 2015 August 5. Available from: http://en.chembase.cn/molecule-157442.html [Website].

  28. 28.

    Steyn JD, Wiesner L, Du Plessis LH, Grobler AF, Smith PJ, Chan WC, et al. Absorption of the novel artemisinin derivatives, artemisone and artemiside: potential application of Pheroid™ technology. Int J Pharm. 2011;414(1–2):260–6.

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2012;64:128–37.

    Article  Google Scholar 

  30. 30.

    Dingler A, Gohla S. Production of solid lipid nanoparticles (SLN): scaling up feasibilities. J Microencapsul. 2002;19:11–6.

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Liu Z, Zhang Q, Ding L, Li C, Yin Z, Yan G, et al. Preparation procedure and pharmacokinetic study of water-in-oil nano-emulsion of Panax notoginseng saponins for improving the oral bioavailability. Curr Drug Deliv. 2016;13:600–10.

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Walters KA, Brain KR. Methods for studying percutaneous absorption. In: Science and applications of skin delivery systems, Wiechers JW. (Ed), Carol Stream, IL:Allured Publishing Corporation, 2008, p. 29–48.

  33. 33.

    Du Preez J, Aucamp M, Burger C, Gerber M, Viljoen JM, van Zyl L, et al. Development and validation of the simultaneous determination of artemisone, clofazimine and decoquinate with HPLC. Die Pharmazie. 2018;73:139–42.

    PubMed  CAS  Google Scholar 

  34. 34.

    Borhade V, Pathak S, Sharma S, Patravale V. Clotrimazole nanoemulsion for malaria chemotherapy. Part 2: stability nassesment, in vivo pharamcodynamic evaluations and toxicological studies. Int. J. Pharm. 2012;431:149–60.

    CAS  Google Scholar 

  35. 35.

    Baert B, Vansteelandt S, De Spiegeleer B. Ion mobility spectrometry as a high-throughput technique for in vitro transdermal Franz diffusion cell experiments of ibuprofen. J Pharm Biomed Anal. 2011;55:472–3.

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    Pellet MS, Roberts M, Hadgraft J. Supersaturated solutions evaluated with an in vitro stratum corneum tape stripping technique. Int J Pharm. 1997;151(1):94.

    Google Scholar 

  37. 37.

    Abcam; 2017 November 14. Available from: http://www.abcam.com/ps/pdf/protocols/cell_culture.pdf [Website].

  38. 38.

    Ahn B, Kim J, Kong C, Seo Y, Kim S. Protective effect of (2’S)-columbianetin from corydalis heterocarpa on UVB-induced keratinocyte damage. J Photochem Photobiol B. 2012;109:20–7.

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Collins L, Franzblau SG. Microplate alamar blue assay versus BACTEC 460 systemfor high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. J Antimicrob Chemother. 1997;41:1004–9.

    CAS  Article  Google Scholar 

  40. 40.

    Van der Ven BC, Fahey RJ, Lee W, Liu Y, Abramovitch RB, Memmott C, et al. Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium’s metabolism is constrained by the intracellular environment. PLoS Pathog. 2015;11:1–20.

    Google Scholar 

  41. 41.

    Mothilal M, Chiatanya Krishna M, Surya Teja SP, Manimaran V, Damodharan N. Formulation and evaluation of naproxen-eudragit® RS 100 nanosuspension using 32 factorial design. Int J Biol Pharm Allied Sci. 2014;6(7):449–55.

    CAS  Google Scholar 

  42. 42.

    Wosicka H, Cal K. Targeting to the hair follicles: current status and potential. J Dermatol Sci. 2010;57(2):83–9.

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Applewhite TH. The composition of safflower seed. J Am Oil Chem Soc. 1966;43:406–8.

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Anon. The Olive Oil Source; 2017 August 8. Available from: https://www.oliveoilsource.com/page/chemical-characteristics [Website].

  45. 45.

    Vermaak I, Kamatou GPP, Komane-Mofokeng B, Viljoen AM, Beckett K. African seed oils of commercial importance: cosmetic applications. S Afr J Bot. 2011;77:920–33.

    Article  CAS  Google Scholar 

  46. 46.

    Cross SE, Roberts MS. Subcutaneous absorption kinetics of interferon and other solutes. J Pharm Pharmacol. 1993;45:606–9.

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Lopez-Garcia J, Lehocky M, Humpolicek P, Saha P. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: extent of cytotoxicity, cell viability and proliferation. J Funct Biomater. 2014;5:43–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. 48.

    Teichmann A, Jacobi U, Weigmann HJ, Terry W, Lademann J. Reservoir function of the stratum corneum: development of an in vivo method to quantitively determine the stratum corneum reservoir for topically applied substances. Skin Pharmacol Physiol. 2005;18:75–80.

    Article  PubMed  CAS  Google Scholar 

  49. 49.

    N’Da D. Prodrug strategies for enhancing percutaneous absorption of drugs. Molecules. 2010;19:20780–807.

    Article  CAS  Google Scholar 

  50. 50.

    De Godoi SM, Quatrin PM, Sagrillo MR, Nascimento K, Wagner R, Klein B, et al. Evaluation of stability and in vitro security of nanoemulsions containing Eucalyptus globulus oil. Biomed Res Int. 2017;7:1–10.

    Article  Google Scholar 

Download references

Acknowledgments and Disclosures

This research project was supported by the South African Medical Research Council (MRC) Flagship Project Scheme with funds from the National Treasury under its Economic Competitiveness and Support Package, The authors thank the Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, South Africa and the National Research Foundation of South Africa for their financial contribution to this project [grant number CPRR13091742482]. Marelize Pretorius of the Statistical Consultation Services is thanked for the statistical analysis of the data and Ms. A. Brümmer for the cytotoxicity studies at the North-West University, Potchefstroom Campus, South Africa. Any opinion, findings and conclusions, or recommendations expressed in this material are those of the authors and therefore the NRF does not accept any liability in regard thereto. The authors declare no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Minja Gerber.

Additional information

Guest Editor: Admire Dube

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burger, C., Aucamp, M., du Preez, J. et al. Formulation of Natural Oil Nano-Emulsions for the Topical Delivery of Clofazimine, Artemisone and Decoquinate. Pharm Res 35, 186 (2018). https://doi.org/10.1007/s11095-018-2471-9

Download citation

Key Words

  • artemisone
  • clofazimine
  • cutaneous tuberculosis
  • decoquinate
  • nano-emulsions