Bioreducible Poly(Amino Ethers) Based mTOR siRNA Delivery for Lung Cancer

A Correction to this article is available

This article has been updated

Abstract

Purpose

Lung cancer is one of the leading causes of deaths in the United States, but currently available therapies for lung cancer are associated with reduced efficacy and adverse side effects. Small interfering RNA (siRNA) can knock down the expression of specific genes and result in therapeutic efficacy in lung cancer. Recently, mTOR siRNA has been shown to induce apoptosis in NSCLC cell lines but its use is limited due to poor stability in biological conditions.

Methods

In this study, we modified an aminoglyocisde-derived cationic poly (amino-ether) by introducing a thiol group using Traut’s reagent to generate a bio-reducible modified–poly (amino-ether) (mPAE). The mPAE polymer was used to encapsulate mTOR siRNA by nanoprecipitation method, resulting in the formation of stable and bio-reducible nanoparticles (NPs) which possessed an average diameter of 114 nm and a surface charge of approximately +27 mV.

Results

The mTOR siRNA showed increased release from the mTS-mPAE NPs in the presence of 10 mM glutathione (GSH). The polymeric mTS-mPAE-NPs were also capable of efficient gene knockdown (60 and 64%) in A549 and H460 lung cancer cells, respectively without significant cytotoxicity at 30 μg/ml concentrations. The NPs also showed time-dependent cellular uptake for up to 24 h as determined using flow cytometry. Delivery of the siRNA using these NPs also resulted in significant inhibition of A549 and H460 cell proliferation in vitro, respectively.

Conclusions

The results demonstrate that the mPAE polymer based NPs show strong potential for siRNA delivery to lung cancer cells. It is anticipated that future modification can help improve the efficacy of nucleic acid delivery, leading to higher inhibition of lung cancer growth in vitro and in vivo.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Change history

  • 05 September 2018

    Under the heading “Methods-Synthesis of the Bioreducible Modified-PAE (mPAE)”, on page 3, line 14–17, there is an error. The quantity unit of PAE and 2-iminothiolane hydrochloride needs to be corrected to mg instead of g.

References

  1. 1.

    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Gandhi NS, Tekade RK, Chougule MB. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances. J Control Release. 2014;194:238–56.

  3. 3.

    Nichols L, Saunders R, Knollmann FD. Causes of death of patients with lung cancer. Arch Pathol Lab Med. 2012;136:1552–7.

    Article  PubMed  Google Scholar 

  4. 4.

    Key Statistics for Lung Cancer, in, 2017. http://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2017.html. Assessed 1 Jul 2017

  5. 5.

    Gadgeel SM, Ramalingam SS, Kalemkerian GP. Treatment of lung cancer. Radiol Clin N Am. 2012;50:961–74.

    Article  PubMed  Google Scholar 

  6. 6.

    Artal Cortés Á, Calera Urquizu L, Hernando Cubero J. Adjuvant chemotherapy in non-small cell lung cancer: state-of-the-art. Translational Lung Cancer Research. 2015;4:191–7.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Links M, Brown R. Clinical relevance of the molecular mechanisms of resistance to anti-cancer drugs. Expert Rev Mol Med. 1999;1999:1–21.

    PubMed  CAS  Google Scholar 

  8. 8.

    Moding EJ, Kastan MB, Kirsch DG. Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov. 2013;12:526–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56:1649–59.

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Kozielski KL, Tzeng SY, De Mendoza BA, Green JJ. Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells. ACS Nano. 2014;8:3232–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. 11.

    Dobashi Y, Watanabe Y, Miwa C, Suzuki S, Koyama S. Mammalian target of rapamycin: a central node of complex signaling cascades. Int J Clin Exp Pathol. 2011;4:476–95.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Goschzik T, Gessi M, Denkhaus D, Pietsch T. PTEN mutations and activation of the PI3K/Akt/mTOR signaling pathway in papillary tumors of the pineal region. J Neuropathol Exp Neurol. 2014;73:747–51.

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Pallet N, Legendre C. Adverse events associated with mTOR inhibitors. Expert Opin Drug Saf. 2013;12:177–86.

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Sadowski K, Kotulska K, Jóźwiak S. Management of side effects of mTOR inhibitors in tuberous sclerosis patients. Pharmacol Rep. 2016;68:536–42.

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Matsubara H, Sakakibara K, Kunimitsu T, Matsuoka H, Kato K, Oyachi N, et al. Non-small cell lung carcinoma therapy using mTOR-siRNA. Int J Clin Exp Pathol. 2012;5:119–25.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Kuwabara PE, Coulson A. RNAi – prospects for a general technique for determining gene function. Parasitol Today. 2000;16(8):347–49.

  18. 18.

    Li SD, Chono S, Huang L. Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA. Mol Ther. 2008;16:942–6.

  19. 19.

    Zeng L, Li J, Wang Y, Qian C, Chen Y, Zhang Q, et al. Combination of siRNA-directed Kras oncogene silencing and arsenic-induced apoptosis using a nanomedicine strategy for the effective treatment of pancreatic cancer. Nanomedicine. 2014;10:463–72.

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Fresta M, Villari A, Puglisi G, Cavallaro G. 5-fluorouracil: various kinds of loaded liposomes: encapsulation efficiency, storage stability and fusogenic properties. Int J Pharm. 1993;99:145–56.

    Article  CAS  Google Scholar 

  21. 21.

    Youngren-Ortiz SR, Gandhi NS, Espana-Serrano L, Chougule MB. Aerosol delivery of siRNA to the lungs. Part 1: rationale for gene delivery systems. Kona. 2016;33:63–85.

  22. 22.

    Lee H, Kim Y-H. Nanobiomaterials for pharmaceutical and medical applications. Arch Pharm Res. 2014;37:1–3.

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Lee YS, Kim SW. Bioreducible polymers for therapeutic gene delivery. J Control Release. 2014;190:424–39.

  24. 24.

    Kosuge H, Sherlock SP, Kitagawa T, Dash R, Robinson JT, Dai H, et al. Near infrared imaging and photothermal ablation of vascular inflammation using single-walled carbon nanotubes. J Am Heart Assoc. 2012;1:e002568.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Son S, Namgung R, Kim J, Singha K, Kim WJ. Bioreducible polymers for gene silencing and delivery. Acc Chem Res. 2012;45:1100–12.

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Kim T-i, Kim SW. Bioreducible polymers for gene delivery. React Funct Polym. 2011;71:344–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. 27.

    Barua S, Joshi A, Banerjee A, Matthews D, Sharfstein ST, Cramer SM, et al. Parallel synthesis and screening of polymers for nonviral gene delivery. Mol Pharm. 2008;6:86–97.

    Article  CAS  Google Scholar 

  28. 28.

    Gosnell H, Kasman LM, Potta T, Vu L, Garrett-Mayer E, Rege K, et al. Polymer-enhanced delivery increases adenoviral gene expression in an orthotopic model of bladder cancer. J Control Release. 2014;176:35–43.

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Miryala B, Zhen Z, Potta T, Breneman CM, Rege K. Parallel synthesis and quantitative structure–activity relationship (QSAR) modeling of aminoglycoside-derived Lipopolymers for transgene expression. ACS Biomaterials Science & Engineering. 2015;1:656–68.

    Article  CAS  Google Scholar 

  30. 30.

    Miryala B, Feng Y, Omer A, Potta T, Rege K. Quaternization enhances the transgene expression efficacy of aminoglycoside-derived polymers. Int J Pharm. 2015;489:18–29.

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Ramos J, Rege K. Transgene delivery using poly(amino ether)-gold nanorod assemblies. Biotechnol Bioeng. 2012;109:1336–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Ramos J, Rege K. Comparative investigation of polymeric and nanoparticle vehicles for transgene delivery. Nano LIFE. 2016;06:1641001.

    Article  CAS  Google Scholar 

  33. 33.

    Ramos J, Rege K. Poly(aminoether)–gold Nanorod assemblies for shRNA plasmid-induced gene silencing. Mol Pharm. 2013;10:4107–19.

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Huang H-C, Barua S, Kay DB, Rege K. Simultaneous enhancement of Photothermal stability and gene delivery efficacy of gold Nanorods using polyelectrolytes. ACS Nano. 2009;3:2941–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Godeshala S, Nitiyanandan R, Thompson B, Goklany S, Nielsen DR, Rege K. Folate receptor-targeted aminoglycoside-derived polymers for transgene expression in cancer cells. Bioengineering & Translational Medicine. 2016;1:220–31.

    Article  CAS  Google Scholar 

  36. 36.

    Miryala B, Godeshala S, Grandhi TSP, Christensen MD, Tian Y, Rege K. Aminoglycoside-derived amphiphilic nanoparticles for molecular delivery. Colloids Surf B: Biointerfaces. 2016;146:924–37.

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Kommareddy S, Amiji M. Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione. Bioconjug Chem. 2005;16:1423–32.

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    King TP, Li Y, Kochoumian L. Preparation of protein conjugates via intermolecular disulfide bond formation. Biochemistry. 1978;17:1499–506.

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Riddles PW, Blakeley RL, Zerner B. Ellman's reagent: 5,5′-dithiobis(2-nitrobenzoic acid)—a reexamination. Anal Biochem. 1979;94:75–81.

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1:1112–6.

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Singh B, Maharjan S, Park TE, Jiang T, Kang SK, Choi YJ, et al. Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: staying in or out of the endosomes. Macromol Biosci. 2015;15:622–35.

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL. The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther. 2013;21:149–57.

  43. 43.

    Alshamsan A. Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles. Saudi Pharmaceutical Journal. 2014;22:219–22.

    Article  PubMed  Google Scholar 

  44. 44.

    Bilati U, Allémann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci. 2005;24:67–75.

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    AccuBlue high sensitivity dsDNA quantification kit (Biotium), in, www.biotium.com, 2016.

  46. 46.

    Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. 2012;2012:1–26.

    Article  CAS  Google Scholar 

  47. 47.

    Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134:489–92.

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opinion on Drug Delivery. 2010;7:429–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. 49.

    Hara K, Tsujimoto H, Huang CC, Kawashima Y, Ando R, Kusuoka O, et al. Ultrastructural and Immunohistochemical studies on uptake and distribution of FITC-conjugated PLGA nanoparticles administered Intratracheally in rats. J Toxicol Pathol. 2012;25:19–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. 50.

    Liu CW, Lin WJ. Polymeric nanoparticles conjugate a novel heptapeptide as an epidermal growth factor receptor-active targeting ligand for doxorubicin. Int J Nanomedicine. 2012;7:4749–67.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. 51.

    Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012;2:3–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. 52.

    Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–7.

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Beyerle A, Irmler M, Beckers J, Kissel T, Stoeger T. Toxicity pathway focused gene expression profiling of PEI-based polymers for pulmonary applications. Mol Pharm. 2010;7:727–37.

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Liang W, Lam JKW. Endosomal escape pathways for non-viral nucleic acid delivery systems. In: Ceresa B, editor. Molecular regulation of endocytosis. Rijeka: InTech; 2012. p. Ch. 17.

    Google Scholar 

  55. 55.

    Shi J, Schellinger JG, Johnson RN, Choi JL, Chou B, Anghel EL, et al. Influence of histidine incorporation on buffer capacity and gene transfection efficiency of HPMA-co-oligolysine brush polymers. Biomacromolecules. 2013;14:1961–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. 56.

    Tseng WC, Tang CH, Fang TY. The role of dextran conjugation in transfection mediated by dextran-grafted polyethylenimine. The Journal of Gene Medicine. 2004;6:895–905.

    Article  PubMed  CAS  Google Scholar 

  57. 57.

    Shim MS, Kwon YJ. Acid-responsive linear polyethylenimine for efficient, specific, and biocompatible siRNA delivery. Bioconjug Chem. 2009;20:488–99.

    Article  PubMed  CAS  Google Scholar 

  58. 58.

    Mok H, Lee SH, Park JW, Park TG. Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing. Nat Mater. 2010;9:272–8.

    Article  PubMed  CAS  Google Scholar 

  59. 59.

    Kim J, Kim SW, Kim WJ. PEI-g-PEG-RGD/small interference RNA polyplex-mediated silencing of vascular endothelial growth factor receptor and its potential as an anti-angiogenic tumor therapeutic strategy. Oligonucleotides. 2011;21:101–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. 60.

    Ekman S, Wynes MW, Hirsch FR. The mTOR pathway in lung cancer and implications for therapy and biomarker analysis. J Thorac Oncol. 2012;7:947–53.

  61. 61.

    Fumarola C, Bonelli MA, Petronini PG, Alfieri RR. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem Pharmacol. 2014;90:197–207.

    Article  PubMed  CAS  Google Scholar 

  62. 62.

    Dang L, Liu J, Li F, Wang L, Li D, Guo B, et al. Targeted delivery Systems for Molecular Therapy in skeletal disorders. Int J Mol Sci. 2016;17:428.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. 63.

    Lin J, Alexander-Katz A. Cell membranes open “doors” for cationic nanoparticles/biomolecules: insights into uptake kinetics. ACS Nano. 2013;7:10799–808.

    Article  PubMed  CAS  Google Scholar 

  64. 64.

    Kommareddy S, Amiji M. Poly(ethylene glycol)-modified thiolated gelatin nanoparticles for glutathione-responsive intracellular DNA delivery. Nanomedicine. 2007;3:32–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. 65.

    Lee D, Lee YM, Jeong C, Lee J, Kim WJ. Bioreducible Guanidinylated Polyethylenimine for efficient gene delivery. ChemMedChem. 2014;9:2718–24.

    Article  PubMed  CAS  Google Scholar 

  66. 66.

    Wardman P, Dennis MF, Stratford MR, White J. Extracellular: intracellular and subcellular concentration gradients of thiols. Int J Radiat Oncol Biol Phys. 1992;22:751–4.

    Article  PubMed  CAS  Google Scholar 

  67. 67.

    Carilho Torrao RBD, Dias IHK, Bennett SJ, Dunston CR, Griffiths HR. Healthy ageing and depletion of intracellular glutathione influences T cell membrane thioredoxin-1 levels and cytokine secretion. Chemistry Central Journal. 2013;7:150.

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Breunig M, Hozsa C, Lungwitz U, Watanabe K, Umeda I, Kato H, et al. Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: disulfide bonds boost intracellular release of the cargo. J Control Release. 2008;130:57–63.

  69. 69.

    Muthiah M, Che HL, Kalash S, Jo J, Choi SY, Kim WJ, et al. Formulation of glutathione responsive anti-proliferative nanoparticles from thiolated Akt1 siRNA and disulfide-crosslinked PEI for efficient anti-cancer gene therapy. Colloids Surf B: Biointerfaces. 2015;126:322–7.

    Article  PubMed  CAS  Google Scholar 

  70. 70.

    Shen Y, Wang J, Li Y, Tian Y, Sun H, Ammar O, et al. Co-delivery of siRNA and paclitaxel into cancer cells by hyaluronic acid modified redox-sensitive disulfide-crosslinked PLGA-PEI nanoparticles. RSC Adv. 2015;5:46464–79.

    Article  CAS  Google Scholar 

  71. 71.

    Tai Z, Wang X, Tian J, Gao Y, Zhang L, Yao C, et al. Biodegradable Stearylated peptide with internal disulfide bonds for efficient delivery of siRNA in vitro and in vivo. Biomacromolecules. 2015;16:1119–30.

    Article  PubMed  CAS  Google Scholar 

  72. 72.

    Erbacher P, Bettinger T, Brion E, Coll JL, Plank C, Behr JP, et al. Genuine DNA/polyethylenimine (PEI) complexes improve transfection properties and cell survival. J Drug Target. 2004;12:223–36.

    Article  PubMed  CAS  Google Scholar 

  73. 73.

    Longo PA, Kavran JM, Kim MS, Leahy DJ. Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol. 2013;529:227–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. 74.

    Hou S, Ziebacz N, Wieczorek SA, Kalwarczyk E, Sashuk V, Kalwarczyk T, et al. Formation and structure of PEI/DNA complexes: quantitative analysis. Soft Matter. 2011;7:6967–72.

    Article  CAS  Google Scholar 

  75. 75.

    Hobel S, Aigner A. Polyethylenimine (PEI)/siRNA-mediated gene knockdown in vitro and in vivo. Methods Mol Biol. 2010;623:283–97.

  76. 76.

    Knight M, Miller A, Liu Y, Scaria P, Woodle M, Ittiprasert W. Polyethyleneimine (PEI) mediated siRNA gene silencing in the Schistosoma mansoni snail host, Biomphalaria glabrata. PLoS Negl Trop Dis. 2011;5:e1212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. 77.

    Kang J-H, Tachibana Y, Kamata W, Mahara A, Harada-Shiba M, Yamaoka T. Liver-targeted siRNA delivery by polyethylenimine (PEI)-pullulan carrier. Bioorg Med Chem. 2010;18:3946–50.

    Article  PubMed  CAS  Google Scholar 

  78. 78.

    Lee S-Y, Huh MS, Lee S, Lee SJ, Chung H, Park JH, et al. Stability and cellular uptake of polymerized siRNA (poly-siRNA)/polyethylenimine (PEI) complexes for efficient gene silencing. J Control Release. 2010;141:339–46.

    Article  PubMed  CAS  Google Scholar 

  79. 79.

    Ibrahim AF, Weirauch U, Thomas M, Grunweller A, Hartmann RK, Aigner A. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 2011;71:5214–24.

    Article  PubMed  CAS  Google Scholar 

  80. 80.

    Meneksedag-Erol D, Tang T, Uludag H. Probing the effect of miRNA on siRNA-PEI Polyplexes. J Phys Chem B. 2015;119:5475–86.

    Article  PubMed  CAS  Google Scholar 

  81. 81.

    Florea BI, Meaney C, Junginger HE, Borchard G. Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. AAPS pharmSci. 2002;4:E12.

    Article  PubMed  Google Scholar 

  82. 82.

    Breunig M, Lungwitz U, Liebl R, Goepferich A. Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc Natl Acad Sci. 2007;104:14454–9.

    Article  PubMed  CAS  Google Scholar 

  83. 83.

    Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther. 2005;11:990–5.

  84. 84.

    Nimesh S, Goyal A, Pawar V, Jayaraman S, Kumar P, Chandra R, et al. Polyethylenimine nanoparticles as efficient transfecting agents for mammalian cells. J Control Release. 2006;110:457–68.

  85. 85.

    Pichon C, Goncalves C, Midoux P. Histidine-rich peptides and polymers for nucleic acids delivery. Adv Drug Deliv Rev. 2001;53:75–94.

    Article  PubMed  CAS  Google Scholar 

  86. 86.

    Mehrotra S, Lee I, Chan C. Multilayer mediated forward and patterned siRNA transfection using linear-PEI at extended N/P ratios. Acta Biomater. 2009;5:1474–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. 87.

    Mishra S, Vaughn AD, Devore DI, Roth CM. Delivery of siRNA silencing Runx2 using a multifunctional polymer-lipid nanoparticle inhibits osteogenesis in a cell culture model of heterotopic ossification. Integr Biol (Camb). 2012;4:1498–507.

  88. 88.

    Shen J, Kim HC, Mu C, Gentile E, Mai J, Wolfram J, et al. Multifunctional gold nanorods for siRNA gene silencing and photothermal therapy. Advanced Healthcare Materials. 2014;3:1629–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. 89.

    Li T, Shen X, Chen Y, Zhang C, Yan J, Yang H, et al. Polyetherimide-grafted Fe(3)O(4)@SiO2(2) nanoparticles as theranostic agents for simultaneous VEGF siRNA delivery and magnetic resonance cell imaging. Int J Nanomedicine. 2015;10:4279–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. 90.

    Read ML, Singh S, Ahmed Z, Stevenson M, Briggs SS, Oupicky D, et al. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res. 2005;33:e86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. 91.

    Yoshino K, Nakamura K, Terajima Y, Kurita A, Matsuzaki T, Yamashita K, et al. Comparative studies of irinotecan-loaded polyethylene glycol-modified liposomes prepared using different PEG-modification methods. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2012;1818:2901–7.

    Article  CAS  Google Scholar 

  92. 92.

    Conti DS, Brewer D, Grashik J, Avasarala S, da Rocha SRP. Poly(amidoamine) dendrimer Nanocarriers and their aerosol formulations for siRNA delivery to the lung epithelium. Mol Pharm. 2014;11:1808–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. 93.

    Ambardekar VV, Han H-Y, Varney ML, Vinogradov SV, Singh RK, Vetro JA. The modification of siRNA with 3′ cholesterol to increase nuclease protection and suppression of native mRNA by select siRNA Polyplexes. Biomaterials. 2011;32:1404–11.

    Article  PubMed  CAS  Google Scholar 

  94. 94.

    Barnaby SN, Lee A, Mirkin CA. Probing the inherent stability of siRNA immobilized on nanoparticle constructs. Proc Natl Acad Sci U S A. 2014;111:9739–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. 95.

    Mokhtarieh AA, Cheong S, Kim S, Chung BH, Lee MK. Asymmetric liposome particles with highly efficient encapsulation of siRNA and without nonspecific cell penetration suitable for target-specific delivery. Biochim Biophys Acta Biomembr. 2012;1818:1633–41.

    Article  CAS  Google Scholar 

  96. 96.

    Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995;55:3752–6.

    PubMed  CAS  Google Scholar 

  97. 97.

    Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 1994;54:3352–6.

    PubMed  CAS  Google Scholar 

  98. 98.

    Green JJ, Langer R, Anderson DG. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc Chem Res. 2008;41:749–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. 99.

    Dandekar P, Jain R, Keil M, Loretz B, Koch M, Wenz G, et al. Enhanced uptake and siRNA-mediated knockdown of a biologically relevant gene using cyclodextrin polyrotaxane. J Mater Chem B. 2015;3:2590–8.

    Article  CAS  Google Scholar 

  100. 100.

    Park SC, Nam JP, Kim YM, Kim JH, Nah JW, Jang MK. Branched polyethylenimine-grafted-carboxymethyl chitosan copolymer enhances the delivery of pDNA or siRNA in vitro and in vivo. Int J Nanomedicine. 2013;8:3663–77.

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Kim TI, Ou M, Lee M, Kim SW. Arginine-grafted bioreducible poly(disulfide amine) for gene delivery systems. Biomaterials. 2009;30:658–64.

    Article  PubMed  CAS  Google Scholar 

  102. 102.

    Chen L, McCrate JM, Lee JC, Li H. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology. 2011;22:105708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. 103.

    Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2013;4:81–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. 104.

    Nam HY, Nam K, Lee M, Kim SW, Bull DA. Dendrimer type bio-reducible polymer for efficient gene delivery. J Control Release. 2012;160:592–600.

  105. 105.

    Morris VB, Sharma CP. Enhanced in-vitro transfection and biocompatibility of L-arginine modified oligo (−alkylaminosiloxanes)-graft-polyethylenimine. Biomaterials. 2010;31:8759–69.

    Article  PubMed  CAS  Google Scholar 

  106. 106.

    Lu S, Morris VB, Labhasetwar V. Codelivery of DNA and siRNA via arginine-rich PEI-based polyplexes. Mol Pharm. 2015;12:621–9.

    Article  PubMed  CAS  Google Scholar 

  107. 107.

    Savic R, Luo L, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science (New York, NY). 2003;300:615–8.

    Article  PubMed  CAS  Google Scholar 

  108. 108.

    Gridelli C, Maione P, Rossi A. The potential role of mTOR inhibitors in non-small cell lung Cancer. Oncologist. 2008;13:139–47.

    Article  PubMed  CAS  Google Scholar 

  109. 109.

    Takahashi H, Wang Y, Grainger DW. Device-based local delivery of siRNA against mammalian target of rapamycin (mTOR) in a murine subcutaneous implant model to inhibit fibrous encapsulation. J Control Release. 2010;147:400–7.

  110. 110.

    You Z, Qian H, Wang C, He B, Yan J, Mao C, et al. Inhibition of DNA nanotube-conjugated mTOR siRNA on the growth of pulmonary arterial smooth muscle cells. Data in Brief. 2015;5:28–34.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahavir B. Chougule.

Electronic supplementary material

ESM 1

(PDF 399 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gandhi, N.S., Godeshala, S., Koomoa-Lange, DL.T. et al. Bioreducible Poly(Amino Ethers) Based mTOR siRNA Delivery for Lung Cancer. Pharm Res 35, 188 (2018). https://doi.org/10.1007/s11095-018-2460-z

Download citation

KEY WORDS

  • bioreducible
  • drug delivery
  • lung cancer
  • mTOR
  • nanomedicine
  • nanoparticles
  • polymer
  • siRNA