Skip to main content
Log in

Chemotherapeutic Delivery from a Self-Assembling Peptide Nanofiber Hydrogel for the Management of Glioblastoma

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Localized chemotherapy has gained significant impetus for the management of malignant brain tumors. In the present study, we appraised the versatility of an in-situ gel forming self-assembling peptide, ac-(RADA)4-CONH2, as a biocompatible delivery depot of the chemotherapeutic drug doxorubicin (DOX) and the anticancer agent curcumin (CUR), respectively.

Methods

The morphology and mechanical properties of ac-(RADA)4-CONH2 were assessed with scanning electron microscopy (SEM) and rheological studies. The in vitro drug release from ac-(RADA)4-CONH2 was monitored in phosphate-buffered saline pH 7.4. Distribution of the fluorescent actives within the peptide matrix was visualized with confocal laser scanning microscopy (CLSM). The in vitro biological performance of the ac-(RADA)4-CONH2-DOX and ac-(RADA)4-CONH2-CUR was evaluated on the human glioblastoma U-87 MG cell line.

Results

SEM studies revealed that the ac-(RADA)4-CONH2 hydrogel contains an entangled nanofiber network. Rheology studies showed that the more hydrophobic CUR resulted in a stiffer hydrogel compared with ac-(RADA)4-CONH2 and ac-(RADA)4-CONH2-DOX, due to the interaction of CUR with the hydrophobic domains of the peptide nanofibers as confirmed by CLSM. In vitro release studies showed a complete DOX release from ac-(RADA)4-CONH2 within 4 days and a prolonged release for ac-(RADA)4-CONH2-CUR over 20 days. An increased cellular uptake and a higher cytotoxic effect were observed for ac-(RADA)4-CONH2-DOX, compared with DOX solution. Higher levels of early apoptosis were observed for the cells treated with the ac-(RADA)4-CONH2-CUR, compared to CUR solution.

Conclusions

The current findings highlight the potential utility of the in-situ depot forming ac-(RADA)4-CONH2 hydrogel for the local delivery of both water soluble and insoluble chemotherapeutic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BBB:

Blood brain barrier

CLSM:

Confocal laser scanning microscopy

CUR:

Curcumin

DOX:

Doxorubicin

GBM:

Glioblastoma multiforme

IC50 :

Half-maximal inhibitory concentration

PBS:

Phosphate-buffered saline

SEM:

Scanning electron microscopy

References

  1. Bastiancich C, Danhier P, Préat V, Danhier F. Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma. J Control Release. 2016;243:29–42.

    Article  CAS  Google Scholar 

  2. Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G. High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25:93–101.

    Article  Google Scholar 

  3. Patel DM, Agarwal N, Tomei KL, Hansberry DR, Goldstein IM. Optimal timing of whole-brain radiation therapy following craniotomy for cerebral malignancies. World Neurosurg. 2015;84(2):412–9.

    Article  Google Scholar 

  4. Hervey-Jumper SL, Berger MS. Maximizing safe resection of low- and high-grade glioma. J Neuro-Oncol. 2016;130(2):269–82.

    Article  Google Scholar 

  5. Holland EC. Glioblastoma multiforme: the terminator. Proc Natl Acad Sci U S A. 2000;97(12):6242–4.

    Article  CAS  Google Scholar 

  6. Jelsma R, Bucy PC. The treatment of glioblastoma multiforme of the brain. J Neurosurg. 1967;27(5):388–400.

    Article  CAS  Google Scholar 

  7. Reardon DA, Wucherpfennig KW, Freeman G, Chiocca EA, Wen PY, Curry WT Jr, et al. An update of vaccine therapy and other immunotherapeutic approaches for glioblastoma. Expert Rev Vaccines. 2014;12(6):597–615.

    Article  Google Scholar 

  8. Karim R, Palazzo C, Evrard B, Piel G. Nanocarriers for the treatment of glioblastoma multiforme: current state-of-the-art. J Control Release. 2016;227:23–37.

    Article  CAS  Google Scholar 

  9. Wolinsky JB, Colson YL. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods and wafers. J Control Release. 2012;159(1):14–26.

    Article  CAS  Google Scholar 

  10. Chakroun RW, Zhang P, Lin R, Schiapparelli P, Quinones-Hinojosa A, Cui H. Nanotherapeutic systems for local treatment of brain tumors. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;10(1):e1479. https://doi.org/10.1002/wnan.1479.

    Article  Google Scholar 

  11. Tian R, Chen J, Niu R. The development of low-molecular weight hydrogels for applications in cancer therapy. Nano. 2014;6(7):3474–82.

    CAS  Google Scholar 

  12. Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev. 2008;37(8):1473–81.

    Article  CAS  Google Scholar 

  13. Fourniols T, Randolph LD, Staub A, Vanvarenberg K, Leprince JG, Préat V, et al. Temozolomide-loaded photopolymerizable PEG-DMA-based hydrogel for the treatment of glioblastoma. J Control Release. 2015;210:95–104.

    Article  CAS  Google Scholar 

  14. Bastiancich C, Vanvarenberg K, Ucakar B, Pitorre M, Bastiat G, Lagarce F, et al. Lauroyl-gemcitabine-loaded lipid nanocapsule hydrogel for the treatment of glioblastoma. J Control Release. 2016;225:283–93.

    Article  CAS  Google Scholar 

  15. Tauro JR, Gemeinhart RA. Matrix metalloproteinase triggered delivery of cancer chemotherapy from hydrogel matrixes. Bioconjug Chem. 2005;16(5):1133–9.

    Article  CAS  Google Scholar 

  16. Meenach SA, Shapiro JM, Hilt JZ, Anderson KW. Characterization of PEG-iron oxide hydrogel nanocomposites for dual hyperthermia and paclitaxel delivery. J Biomater Sci Polym. 2013;24(9):1112–26.

    Article  CAS  Google Scholar 

  17. Tsao CT, Kievit FM, Ravanpay A, Erickson AE, Jensen MC, Ellenbogen RG, et al. Thermoreversible poly(ethylene glycol)-g-chitosan hydrogel as a therapeutic T lymphocyte depot for localized glioblastoma immunotherapy. Biomacromolecules. 2014;15(7):2656–62.

    Article  CAS  Google Scholar 

  18. Jain A, Betancur M, Patel GD, Valmikinathan CM, Mukhatyar VJ, Vakharia A, et al. Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres. Nat Mater. 2014;13(3):308–16.

    Article  CAS  Google Scholar 

  19. Koutsopoulos S, Unsworth LD, Nagai Y, Zhang SG. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc Natl Acad Sci U S A. 2009;106(12):4623–8.

    Article  CAS  Google Scholar 

  20. Nagai Y, Unsworth LD, Koutsopoulos S, Zhang S. Slow release of molecules in self-assembling peptide nanofiber scaffold. J Control Release. 2006;115(1):18–25.

    Article  CAS  Google Scholar 

  21. Thota CK, Yadav N, Chauhan VS. A novel highly stable and injectable hydrogel based on a conformationally restricted ultrashort peptide. Sci Rep. 2016;6:31167.

    Article  CAS  Google Scholar 

  22. Li X, Fu M, Wu J, Zhang CY, Deng X, Dhinakar A, et al. pH-sensitive peptide hydrogel for glucose-responsive insulin delivery. Acta Biomater. 2017;51:294–303.

    Article  CAS  Google Scholar 

  23. Kopesky PW, Byun S, Vanderploeg EJ, Kisiday JD, Frisbie DD, Grodzinsky AJ. Sustained delivery of bioactive TGF-beta 1 from self-assembling peptide hydrogels induces chondrogenesis of encapsulated bone marrow stromal cells. J Biomed Mater Res A. 2014;102(5):1275–85.

    Article  Google Scholar 

  24. Liebesny PH, Byun S, Hung HH, Pancoast JR, Mroszczyk KA, Young WT, et al. Growth factor-mediated migration of bone marrow progenitor cells for accelerated scaffold recruitment. Tissue Eng A. 2016;22(13–14):917–27.

    Article  CAS  Google Scholar 

  25. Koutsopoulos S. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: progress, design guidelines, and applications. J Biomed Mater Res A. 2016;104(4):1002–16.

    Article  CAS  Google Scholar 

  26. Acar H, Srivastava S, Chung EJ, Schnorenberg MR, Barrett JC, LaBelle JL, et al. Self-assembling peptide-based building blocks in medical applications. Adv Drug Deliv Rev. 2017;110-111:65–79.

    Article  CAS  Google Scholar 

  27. Cormier AR, Pang X, immerman MI, Zhou HX, Paravastu AK. Molecular structure of RADA16-I designer self-assembling peptide nanofibers. ACS Nano. 2013;7:7562–72.

    Article  CAS  Google Scholar 

  28. Momparler RL, Karon M, Siegel SE, Avila F. Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res. 1976;36:2891–5.

    CAS  PubMed  Google Scholar 

  29. Sordillo LA, Sordillo PP, Helson L. Curcumin for the treatment of glioblastoma. Anticancer Res. 2015;35(8):6373–8.

    CAS  PubMed  Google Scholar 

  30. Cajot S, Van Butsele K, Paillard A, Passirani C, Garcion E, Benoit JP, et al. Smart nanocarriers for pH-triggered targeting and release of hydrophobic drugs. Acta Biomater. 2012;8(12):4215–23.

    Article  CAS  Google Scholar 

  31. Manchun S, Dass CR, Sriamornsak P. Targeted therapy for cancer using pH-responsive nanocarrier systems. Life Sci. 2012;90(11–12):381–7.

    Article  CAS  Google Scholar 

  32. Ritger PL, Peppas NA. A simple equation for description of solute release ii. Fickian and anomalous release from swellable devices. J Control Release. 1987;5(1):37–42.

    Article  CAS  Google Scholar 

  33. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71.

    Article  Google Scholar 

  34. Altunbas A, Lee SJ, Rajasekaran SA, Schneider JP, Pochan DJ. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials. 2011;32(25):5906–14.

    Article  CAS  Google Scholar 

  35. Liu J, Zhang L, Yang Z, Zhao X. Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro. Int J Nanomedicine. 2011;6:2143–53.

    Article  CAS  Google Scholar 

  36. Li I-C, Moore AN, Hartgerink JD. “Missing tooth” multidomain peptide nanofibers for delivery of small molecule drugs. Biomacromolecules. 2016;17:2087–95.

    Article  CAS  Google Scholar 

  37. Liu J, Liu J, Xu H, Zhang Y, Chu L, Liu Q, et al. Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery. Int J Nanomedicine. 2014;9:197–207.

    PubMed  Google Scholar 

  38. Koutsopoulos S, Zhang S. Long-term three-dimensional neural tissue cultures in functionalized self-assembling peptide hydrogels, Matrigel and Collagen I. Acta Biomater. 2013;9(2):5162–9.

    Article  CAS  Google Scholar 

  39. Cheng TY, Chen MH, Chang WH, Huang MY, Wang TW. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials. 2013;34(8):2005–16.

    Article  CAS  Google Scholar 

  40. Wang X, Wang J, Guo L, Wang X, Chen H, Wang X, et al. Self-assembling peptide hydrogel scaffolds support stem cell-based hair follicle regeneration. Nanomed Nanotechnol Biol Med. 2016;12(7):2115–25.

    Article  CAS  Google Scholar 

  41. Koutsopoulos S, Zhang S. Two-layered injectable self-assembling peptide scaffold hydrogels for long-term sustained release of human antibodies. J Control Release. 2012;160(3):451–8.

    Article  CAS  Google Scholar 

  42. Zhou A, Chen S, He B, Zhao W, Chen X. Controlled release of TGF-beta 1 from RADA self-assembling peptide hydrogel scaffolds. Drug Des Devel Ther. 2016;10:3043–51.

    Article  CAS  Google Scholar 

  43. Karavasili C, Komnenou A, Katsamenis OL, Charalampidou G, Kofidou E, Andreadis D, et al. Self-assembling peptide nanofiber hydrogels for controlled ocular delivery of timolol maleate. ACS Biomater Sci Eng. 2017;3(12):3386–94.

    Article  CAS  Google Scholar 

  44. Brosseau N, Andreev E, Ramotar D. Complementation of the yeast model system reveals that caenorhabditis elegans OCT-1 is a functional transporter of anthracyclines. PLoS One. 2015;10(7):e0133182.

    Article  Google Scholar 

  45. Kunwar A, Barik A, Mishra B, Rathinasamy K, Pandey R, Priyadarsini KI. Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim Biophys Acta Gen Subj. 2008;1780(4):673–9.

    Article  CAS  Google Scholar 

  46. Sun J, Bi C, Chan HM, Sun S, Zhang Q, Zheng Y. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf B Biointerfaces. 2013;111:367–75.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

C.K. is supported by the Onassis Foundation with a PhD scholarship. We thank Orestis L. Katsamenis from μ-VIS X-ray Imaging Centre, Faculty of Engineering and the Environment, University of Southampton, Southampton for the SEM studies. We would like to thank Dr. A. Lazaridou from Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Greece for her assistance in the rheology measurements. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Dimitrios G. Fatouros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karavasili, C., Panteris, E., Vizirianakis, I.S. et al. Chemotherapeutic Delivery from a Self-Assembling Peptide Nanofiber Hydrogel for the Management of Glioblastoma. Pharm Res 35, 166 (2018). https://doi.org/10.1007/s11095-018-2442-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2442-1

Key words

Navigation