Skip to main content
Log in

Pectin and Mucin Enhance the Bioadhesion of Drug Loaded Nanofibrillated Cellulose Films

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Bioadhesion is an important property of biological membranes, that can be utilized in pharmaceutical and biomedical applications. In this study, we have fabricated mucoadhesive drug releasing films with bio-based, non-toxic and biodegradable polymers that do not require chemical modifications.

Methods

Nanofibrillar cellulose and anionic type nanofibrillar cellulose were used as film forming materials with known mucoadhesive components mucin, pectin and chitosan as functional bioadhesion enhancers. Different polymer combinations were investigated to study the adhesiveness, solid state characteristics, film morphology, swelling, mechanical properties, drug release with the model compound metronidazole and in vitro cytotoxicity using TR146 cells to model buccal epithelium.

Results

SEM revealed lamellar structures within the films, which had a thickness ranging 40–240 μm depending on the film polymer composition. All bioadhesive components were non-toxic and showed high adhesiveness. Rapid drug release was observed, as 60–80% of the total amount of metronidazole was released in 30 min depending on the film formulation.

Conclusions

The liquid molding used was a straightforward and simple method to produce drug releasing highly mucoadhesive films, which could be utilized in treating local oral diseases, such as periodontitis. All materials used were natural biodegradable polymers from renewable sources, which are generally regarded as safe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

NFC:

Nanofibrillar cellulose

ANFC:

Anionic type nanofibrillar cellulose

MZ:

Metronidazole

References

  1. Jones DS, Woolfson AD, Brown AF, Coulter WA, McClelland C, Irwin CR. Design, characterisation and preliminary clinical evaluation of a novel mucoadhesive topical formulation containing tetracycline for the treatment of periodontal disease. J Control Release. 2000;67:357–68.

    Article  PubMed  CAS  Google Scholar 

  2. Patel VF, Liu F, Brown MB. Modeling the oral cavity: In vitro and in vivo evaluations of buccal drug delivery systems. J Control Release. 2012;161:746–56.

    Article  PubMed  CAS  Google Scholar 

  3. Deng Y, Yang F, Cocco E, Song E, Zhang J, Cui J, et al. Improved i.p. drug delivery with bioadhesive nanoparticles. Proc Natl Acad Sci U S A. 2016;113:11453–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Pettit DK, Gombotz WR. The development of site-specific drug-delivery systems for protein and peptide biopharmaceuticals. Trends Biotechnol. 1998;16:343–9.

    Article  PubMed  CAS  Google Scholar 

  5. Giano MC, Ibrahim Z, Medina SH, Sarhane KA, Christensen JM, Yamada Y, et al. Injectable bioadhesive hydrogels with innate antibacterial properties. Nat Commun. 2014;5:4095.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. García MC, Aldana AA, Tártara LI, Alovero F, Strumia MC, Manzo RH, et al. Bioadhesive and biocompatible films as wound dressing materials based on a novel dendronized chitosan loaded with ciprofloxacin. Carbohydr Polym. 2017;175:75–86.

    Article  PubMed  CAS  Google Scholar 

  7. Fonseca-Santos B, Satake CY, Calixto GMF, dos Santos AM, Chorilli M. Trans-resveratrol-loaded nonionic lamellar liquid-crystalline systems: structural, rheological, mechanical, textural, and bioadhesive characterization and evaluation of in vivo anti-inflammatory activity. Int J Nanomedicine. 2017;12:6883.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jorfi M, Foster EJ. Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci. 2015;132

  9. Halib N, Perrone F, Cemazar M, Dapas B, Farra R, Abrami M, et al. Potential Applications of Nanocellulose-Containing Materials in the Biomedical Field. Materials (Basel). 2017;10:977.

    Article  Google Scholar 

  10. Märtson M, Viljanto J, Hurme T, Laippala P, Saukko P. Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials. 1999;20:1989–95.

    Article  PubMed  Google Scholar 

  11. Vartiainen J, Pöhler T, Sirola K, Pylkkänen L, Alenius H, Hokkinen J, et al. Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose. 2011;18:775–86.

    Article  CAS  Google Scholar 

  12. Miron-Mendoza M, Seemann J, Grinnell F. The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices. Biomaterials. 2010;31:6425–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Bhattacharya M, Malinen MM, Lauren P, Lou Y, Kuisma SW, Kanninen L, et al. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release. 2012;164:291–8.

    Article  PubMed  CAS  Google Scholar 

  14. Saito T, Kimura S, Nishiyama Y, Isogai A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules. 2007;8:2485–91.

    Article  PubMed  CAS  Google Scholar 

  15. Saito T, Nishiyama Y, Putaux J, Vignon M, Isogai A. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules. 2006;7:1687–91.

    Article  PubMed  CAS  Google Scholar 

  16. Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T. Nanofibrillar cellulose films for controlled drug delivery. Eur J Pharm Biopharm. 2012;82:308–15.

    Article  PubMed  CAS  Google Scholar 

  17. Kolakovic R, Peltonen L, Laukkanen A, Hellman M, Laaksonen P, Linder MB, et al. Evaluation of drug interactions with nanofibrillar cellulose. Eur J Pharm Biopharm. 2013;85:1238–44.

    Article  PubMed  CAS  Google Scholar 

  18. Lee K, Aitomäki Y, Berglund LA, Oksman K, Bismarck A. On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Sci Technol. 2014;105:15–27.

    Article  CAS  Google Scholar 

  19. Meneguin AB, Cury BSF, dos Santos AM, Franco DF, Barud HS, da Silva Filho EC. Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydr Polym. 2017;157:1013–23.

    Article  PubMed  CAS  Google Scholar 

  20. Laurén P, Somersalo P, Pitkänen I, Lou Y, Urtti A, Partanen J, et al. Nanofibrillar cellulose-alginate hydrogel coated surgical sutures as cell-carrier systems. PLoS One. 2017;12:e0183487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J. 2014;59:302–25.

    Article  CAS  Google Scholar 

  22. Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev. 2005;57:1666–91.

    Article  PubMed  CAS  Google Scholar 

  23. Svensson O, Arnebrant T. Mucin layers and multilayers—Physicochemical properties and applications. Curr Opin Colloid Interface Sci. 2010;15:395–405.

    Article  CAS  Google Scholar 

  24. Linden S, Sutton P, Karlsson N, Korolik V, McGuckin M. Mucins in the mucosal barrier to infection. Mucosal Immunol. 2008;1:183–97.

    Article  PubMed  CAS  Google Scholar 

  25. Lieleg O, Ribbeck K. Biological hydrogels as selective diffusion barriers. Trends Cell Biol. 2011;21:543–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bansil R, Turner BS. Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interface Sci. 2006;11:164–70.

    Article  CAS  Google Scholar 

  27. Thirawong N, Nunthanid J, Puttipipatkhachorn S, Sriamornsak P. Mucoadhesive properties of various pectins on gastrointestinal mucosa: an in vitro evaluation using texture analyzer. Eur J Pharm Biopharm. 2007;67:132–40.

    Article  PubMed  CAS  Google Scholar 

  28. Zargar V, Asghari M, Dashti A. A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews. 2015;2:204–26.

    Article  CAS  Google Scholar 

  29. Builders PF, Kunle OO, Okpaku LC, Builders MI, Attama AA, Adikwu MU. Preparation and evaluation of mucinated sodium alginate microparticles for oral delivery of insulin. Eur J Pharm Biopharm. 2008;70:777–83.

    Article  PubMed  CAS  Google Scholar 

  30. Ashton L, Pudney PDA, Blanch EW, Yakubov GE. Understanding glycoprotein behaviours using Raman and Raman optical activity spectroscopies: Characterising the entanglement induced conformational changes in oligosaccharide chains of mucin. Adv Colloid Interface Sci. 2013;199-200:66–77.

    Article  PubMed  CAS  Google Scholar 

  31. BeMiller JN. An introduction to pectins: structure and properties, in: An introduction to pectins: structure and properties. ACS Publications. 1986.

  32. Huanbutta K, Cheewatanakornkool K, Terada K, Nunthanid J, Sriamornsak P. Impact of salt form and molecular weight of chitosan on swelling and drug release from chitosan matrix tablets. Carbohydr Polym. 2013;97:26–33.

    Article  PubMed  CAS  Google Scholar 

  33. El-Mahrouk GM, El-Gazayerly ON, Aboelwafa AA, Taha MS. Chitosan lactate wafer as a platform for the buccal delivery of tizanidine HCl: in vitro and in vivo performance. Int J Pharm. 2014;467:100–12.

    Article  PubMed  CAS  Google Scholar 

  34. Bruschi ML, Jones DS, Panzeri H, Gremião MP, De Freitas O, Lara EH. Semisolid systems containing propolis for the treatment of periodontal disease: in vitro release kinetics, syringeability, rheological, textural, and mucoadhesive properties. J Pharm Sci. 2007;96:2074–89.

    Article  PubMed  CAS  Google Scholar 

  35. El-Kamel AH, Ashri LY, Alsarra IA. Micromatricial metronidazole benzoate film as a local mucoadhesive delivery system for treatment of periodontal diseases. AAPS PharmSciTech. 2007;8:E184–94.

    Article  PubMed Central  Google Scholar 

  36. Zykwinska AW, Ralet MC, Garnier CD, Thibault JF. Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol. 2005;139:397–407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Myllytie P, Salmi J, Laine J. The influence of pH on the adsorption and interaction of chitosan with cellulose. BioResources. 2009;4:1647–62.

    CAS  Google Scholar 

  38. Cranston ED, Eita M, Johansson E, Netrval J, Salajková M, Arwin H, et al. Determination of Young’s modulus for nanofibrillated cellulose multilayer thin films using buckling mechanics. Biomacromolecules. 2011;12:961–9.

    Article  PubMed  CAS  Google Scholar 

  39. Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T. Cellulose nanopaper structures of high toughness. Biomacromolecules. 2008;9:1579–85.

    Article  PubMed  CAS  Google Scholar 

  40. Mohammadi P, Toivonen MS, Ikkala O, Wagermaier W, Linder MB. Aligning cellulose nanofibril dispersions for tougher fibers. Sci Rep. 2017;7:11860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A. Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym. 2011;84:579–83.

    Article  CAS  Google Scholar 

  42. Lu J, Askeland P, Drzal LT. Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer. 2008;49:1285–96.

    Article  CAS  Google Scholar 

  43. Orelma H, Filpponen I, Johansson L, Österberg M, Rojas OJ, Laine J. Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics. Biointerphases. 2012;7:61.

    Article  PubMed  CAS  Google Scholar 

  44. Gum J. Mucin genes and the proteins they encode: structure, diversity, and regulation. Am J Respir Cell Mol Biol. 1992;7:557.

    Article  PubMed  CAS  Google Scholar 

  45. Sriamornsak P, Thirawong N, Weerapol Y, Nunthanid J, Sungthongjeen S. Swelling and erosion of pectin matrix tablets and their impact on drug release behavior. Eur J Pharm Biopharm. 2007;67:211–9.

    Article  PubMed  CAS  Google Scholar 

  46. Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, et al. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci. 2013;50:69–77.

    Article  PubMed  CAS  Google Scholar 

  47. Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M. Structure and interactions of plant cell-wall polysaccharides by two-and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry (NY). 2011;50:989–1000.

    Article  CAS  Google Scholar 

  48. Han C, Chen J, Wu X, Huang Y, Zhao Y. Detection of metronidazole and ronidazole from environmental Samples by surface enhanced Raman spectroscopy. Talanta. 2014;128:293–8.

    Article  PubMed  CAS  Google Scholar 

  49. Gnanasambandam R, Proctor A. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chem. 2000;68:327–32.

    Article  CAS  Google Scholar 

  50. Sacui IA, Nieuwendaal RC, Burnett DJ, Stranick SJ, Jorfi M, Weder C, et al. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces. 2014;6:6127–38.

    Article  PubMed  CAS  Google Scholar 

  51. De Gelder J, De Gussem K, Vandenabeele P, Moens L. Reference database of Raman spectra of biological molecules. J Raman Spectrosc. 2007;38:1133–47.

    Article  CAS  Google Scholar 

  52. Oh CM, Heng PWS, Chan LW. Influence of hydroxypropyl methylcellulose on metronidazole crystallinity in spray-congealed polyethylene glycol microparticles and its impact with various additives on Metronidazole release. AAPS PharmSciTech. 2015;16:1357–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Zykwinska A, Thibault J, Ralet M. Competitive binding of pectin and xyloglucan with primary cell wall cellulose. Carbohydr Polym. 2008;74:957–61.

    Article  CAS  Google Scholar 

  54. Cosgrove DJ. Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol. 2014;22:122–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gu J, Catchmark JM. The impact of cellulose structure on binding interactions with hemicellulose and pectin. Cellulose. 2013;20:1613–27.

    Article  CAS  Google Scholar 

  56. Jacobsen J, van Deurs B, Pedersen M, Rassing MR. TR146 cells grown on filters as a model for human buccal epithelium: I. Morphology, growth, barrier properties, and permeability. Int J Pharm. 1995;125:165–84.

    Article  CAS  Google Scholar 

  57. Nielsen HM, Rassing MR. TR146 cells grown on filters as a model of human buccal epithelium: IV. Permeability of water, mannitol, testosterone and β-adrenoceptor antagonists. Comparison to human, monkey and porcine buccal mucosa. Int J Pharm. 2000;194:155–67.

    Article  PubMed  CAS  Google Scholar 

  58. Mahood J, Willson R. Cytotoxicity of metronidazole (Flagyl) and misonidazole (Ro-07-0582): enhancement by lactate. Br J Cancer. 1981;43:350–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from Academy of Finland (Grant No. 258114) is gratefully acknowledged. Orion Foundation of the Professor Pool, Finland is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Laaksonen.

Electronic supplementary material

ESM 1

(DOCX 502 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurén, P., Paukkonen, H., Lipiäinen, T. et al. Pectin and Mucin Enhance the Bioadhesion of Drug Loaded Nanofibrillated Cellulose Films. Pharm Res 35, 145 (2018). https://doi.org/10.1007/s11095-018-2428-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2428-z

KEY WORDS

Navigation