Skip to main content
Log in

Physical Stability of Amorphous Solid Dispersions: a Physicochemical Perspective with Thermodynamic, Kinetic and Environmental Aspects

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Amorphous solid dispersions (ASDs) have been widely used in the pharmaceutical industry for solubility enhancementof poorly water-soluble drugs. The physical stability, however, remainsone of the most challenging issues for the formulation development.Many factors can affect the physical stability via different mechanisms, and therefore an in-depth understanding on these factors isrequired.

Methods

In this review, we intend to summarize the physical stability of ASDsfrom a physicochemical perspective whereby factors that can influence the physical stability areclassified into thermodynamic, kinetic and environmental aspects.

Results

The drug-polymer miscibility and solubility are consideredas the main thermodynamicfactors which may determine the spontaneity of the occurrence of the physical instabilityof ASDs. Glass-transition temperature,molecular mobility, manufacturing process,physical stabilityof amorphous drugs, and drug-polymerinteractionsareconsideredas the kinetic factors which areassociated with the kinetic stability of ASDs on aging. Storage conditions including temperature and humidity could significantly affect the thermodynamicand kineticstabilityof ASDs.

Conclusion

When designing amorphous solid dispersions, it isrecommended that these thermodynamic, kinetic and environmental aspects should be completely investigatedand compared to establish rationale formulations for amorphous solid dispersions with high physical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

ASD:

Amorphous solid dispersion

DSC:

Differential scanning calorimetry

FDA:

Food and drug administration

FT-IR:

Fourier transform infrared spectroscopy

HPMCAS:

Hydroxypropyl cellulose acetate succinate

MTDSC:

Modulated temperature differential scanning calorimetry

NMR:

Nuclear magnetic resonance spectroscopy

PC-SAFT:

Perturbed-chain statistical associating fluid theory

PEG:

Polyethylene glycol

PLGA:

Poly lactic-co-glycolic acid

PVP:

Polyvinylpyrrolidone

PVP K12:

Polyvinylpyrrolidone (Mw = 3500)

PVPVA64:

Vinylpyrrolidone-vinyl acetate copolymer[60:40]

Tg :

Glass transition temperature

Vitamin E TPGS :

D-α-tocopheryl polyethylene glycol succinate

References

  1. Sekiguchi K, Obi N. Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull. 1961;9(11):866–72.

    Article  CAS  Google Scholar 

  2. Goldberg AH, Gibaldi M, Kanig JL, Mayersohn M. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures. Iv. Chloramphenicol--urea system. J Pharm Sci. 1966;55(6):581–3.

    Article  PubMed  CAS  Google Scholar 

  3. Suzuki H, Yakushiji K, Matsunaga S, Yamauchi Y, Seto Y, Sato H, et al. Amorphous solid dispersion of meloxicam enhanced oral absorption in rats with impaired gastric motility. J Pharm Sci. 2018;107(1):446–52.

    Article  PubMed  CAS  Google Scholar 

  4. Ohyagi N, Ueda K, Higashi K, Yamamoto K, Kawakami K, Moribe K. Synergetic role of hypromellose and methacrylic acid copolymer in the dissolution improvement of amorphous solid dispersions. J Pharm Sci. 2017;106(4):1042–50.

    Article  PubMed  CAS  Google Scholar 

  5. Weerapol Y, Limmatvapirat S, Nunthanid J, Konthong S, Suttiruengwong S, Sriamornsak P. Development and characterization of nifedipine-amino methacrylate copolymer solid dispersion powders with various adsorbents. Asian J Pharm Sci. 2017;12(4):335–43.

    Article  Google Scholar 

  6. Weerapol Y, Tubtimsri S, Jansakul C, Sriamornsak P. Improved dissolution of kaempferia parviflora extract for oral administration by preparing solid dispersion via solvent evaporation. Asian J Pharm Sci. 2017;12(2):124–33.

    Article  Google Scholar 

  7. Amidon GL, Lennernäs H, Shah VP, Crison JRA. theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  PubMed  CAS  Google Scholar 

  8. Yu L. Amorphous pharmaceutical solids: Preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48(1):27–42.

    Article  PubMed  CAS  Google Scholar 

  9. Vasconcelos T, Marques S, das Neves J, Sarmento B. Amorphous solid dispersions: rational selection of a manufacturing process. Adv Drug Deliv Rev. 2016;100:85–101.

    Article  PubMed  CAS  Google Scholar 

  10. Singh A, Mooter GVD. Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev. 2016;100:27–50.

    Article  PubMed  CAS  Google Scholar 

  11. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.

    Article  PubMed  CAS  Google Scholar 

  12. DeBoyace K, Wildfong PLD. The application of modeling and prediction to the formation and stability of amorphous solid dispersions. J Pharm Sci. 2018;107(1):57–74.

    Article  PubMed  CAS  Google Scholar 

  13. Khougaz K, Clas SD. Crystallization inhibition in solid dispersions of mk-0591 and poly(vinylpyrrolidone) polymers. J Pharm Sci. 2000;89(10):1325–34.

    Article  PubMed  CAS  Google Scholar 

  14. Crowley MM, Zhang F, Koleng JJ, McGinity JW. Stability of polyethylene oxide in matrix tablets prepared by hot-melt extrusion. Biomaterials. 2002;23(21):4241–8.

    Article  PubMed  CAS  Google Scholar 

  15. Chiou D, Langrish TAG. Crystallization of amorphous components in spray-dried powders. Dry Technol. 2007;25(9):1427–35.

    Article  CAS  Google Scholar 

  16. Wu Q, Kennedy MT, Nagapudi K, Kiang YH. Humidity induced phase transformation of poloxamer 188 and its effect on physical stability of amorphous solid dispersion of amg 579, a pde10a inhibitor. Int J Pharm. 2017;521(1–2):1–7.

    Article  PubMed  CAS  Google Scholar 

  17. Zhu DA, Zografi G, Gao P, Gong Y, Zhang GG. Modeling physical stability of amorphous solids based on temperature and moisture stresses. J Pharm Sci. 2016;105(9):2932–9.

    Article  PubMed  CAS  Google Scholar 

  18. Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res. 1995;12(6):799.

    Article  PubMed  CAS  Google Scholar 

  19. Hancock BC, Zograf G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  20. Andronis V, Zografi G. The molecular mobility of supercooled amorphous indomethacin as a function of temperature and relative humidity. Pharm Res. 1998;15(6):835–42.

    Article  PubMed  CAS  Google Scholar 

  21. Saiter JM, Grenet J, Dargent E, Saiter A, Delbreilh L. Glass transition temperature and value of the relaxation time at tg in vitreous polymers. Macromol Symp. 2007;258(1):152–61.

    Article  CAS  Google Scholar 

  22. Huang J, Wigent RJ, Schwartz JB. Drug-polymer interaction and its significance on the physical stability of nifedipine amorphous dispersion in microparticles of an ammonio methacrylate copolymer and ethylcellulose binary blend. J Pharm Sci. 2008;97(1):251–62.

    Article  PubMed  CAS  Google Scholar 

  23. Qi S, Moffat JG, Yang Z. Early stage phase separation in pharmaceutical solid dispersion thin films under high humidity: Improved spatial understanding using probe-based thermal and spectroscopic nanocharacterization methods. Mol Pharm. 2013;10(3):918–30.

    Article  PubMed  CAS  Google Scholar 

  24. Singh A, Bharati A, Frederiks P, Verkinderen O, Goderis B, Cardinaels R, et al. Effect of compression on the molecular arrangement of itraconazole–soluplus solid dispersions: Induction of liquid crystals or exacerbation of phase separation? Mol Pharm. 2016;13(6):1879.

    Article  PubMed  CAS  Google Scholar 

  25. Knopp MM, Tajber L, Tian Y, Olesen NE, Jones DS, Kozyra A, et al. Comparative study of different methods for the prediction of drug–polymer solubility. Mol Pharm. 2015;12(9):3408–19.

    Article  PubMed  CAS  Google Scholar 

  26. Huang Y, Dai WG. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2014;4(1):18–25.

    Article  PubMed  Google Scholar 

  27. Meng F, Gala U, Chauhan H. Classification of solid dispersions: Correlation to (i) stability and solubility (ii) preparation and characterization techniques. Drug Dev Ind Pharm. 2015;41(9):1401–15.

    Article  PubMed  CAS  Google Scholar 

  28. Janssens S, GVd M. Review: Physical chemistry of solid dispersions. J Pharm Pharmacol. 2009;61(12):1571–86.

    Article  PubMed  CAS  Google Scholar 

  29. Listed N. The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today. 2012;9(2):e71.

    Article  CAS  Google Scholar 

  30. Vo LN, Park C, Lee BJ. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85(3):799–813.

    Article  PubMed  CAS  Google Scholar 

  31. Van Duong T, Van den Mooter G. The role of the carrier in the formulation of pharmaceutical solid dispersions. Part i: crystalline and semi-crystalline carriers. Expert Opin Drug Del. 2016;13(11):1583–94.

    Article  CAS  Google Scholar 

  32. Van Duong T, Van den Mooter G. The role of the carrier in the formulation of pharmaceutical solid dispersions. Part ii: Amorphous carriers. Expert Opin Drug Del. 2016;13(12):1681–94.

    Article  CAS  Google Scholar 

  33. Purohit HS, Taylor LS. Phase separation kinetics in amorphous solid dispersions upon exposure to water. Mol Pharm. 2015;12(5):1623–35.

    Article  PubMed  CAS  Google Scholar 

  34. Qian F, Huang J, Hussain MA. Drug-polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci. 2010;99(7):2941–7.

    Article  PubMed  CAS  Google Scholar 

  35. Knopp MM, Olesen NE, Holm P, Langguth P, Holm R, Rades T. Influence of polymer molecular weight on drug–polymer solubility: a comparison between experimentally determined solubility in pvp and prediction derived from solubility in monomer. J Pharm Sci. 2015;104(9):2905–12.

    Article  PubMed  CAS  Google Scholar 

  36. Paudel A, Van Humbeeck J, Van den Mooter G. Theoretical and experimental investigation on the solid solubility and miscibility of naproxen in poly(vinylpyrrolidone). Mol Pharm. 2010;7(4):1133–48.

    Article  PubMed  CAS  Google Scholar 

  37. Jog R, Gokhale R, Burgess DJ. Solid state drug-polymer miscibility studies using the model drug abt-102. Int J Pharm. 2016;509(1–2):285–95.

    Article  PubMed  CAS  Google Scholar 

  38. Piccinni P, Tian YW, McNaughton A, Fraser J, Brown S, Jones DS, et al. Solubility parameter-based screening methods for early-stage formulation development of itraconazole amorphous solid dispersions. J Pharm Pharmacol. 2016;68(5):705–20.

    Article  PubMed  CAS  Google Scholar 

  39. Li N, Taylor LS. Nanoscale infrared, thermal, and mechanical characterization of telaprevir-polymer miscibility in amorphous solid dispersions prepared by solvent evaporation. Mol Pharm. 2016;13(3):1123–36.

    Article  PubMed  CAS  Google Scholar 

  40. Maniruzzaman M, Pang J, Morgan DJ, Douroumis D. Molecular modeling as a predictive tool for the development of solid dispersions. Mol Pharm. 2015;12(4):1040–9.

    Article  PubMed  CAS  Google Scholar 

  41. Fedors RF. A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci. 1974;14(2):147–54.

    Article  CAS  Google Scholar 

  42. Sunwoo C, Eisen H. Solubility parameter of selected sulfonamides. J Pharm Sci. 1971;60(2):238–44.

    Article  PubMed  CAS  Google Scholar 

  43. Greenhalgh DJ, Williams AC, Timmins P, York P. Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci. 1999;88(11):1182–90.

    Article  PubMed  CAS  Google Scholar 

  44. Albers J, Matthee K, Knop K, Kleinebudde P. Evaluation of predictive models for stable solid solution formation. J Pharm Sci. 2011;100(2):667–80.

    Article  PubMed  CAS  Google Scholar 

  45. Hansen CM. The universality of the solubility parameter. Ind Eng Chem Prod Res Dev. 1969;8(1):2–11.

    Article  CAS  Google Scholar 

  46. Yani Y, Kanaujia P, Chow PS, Tan RBH. Effect of api-polymer miscibility and interaction on the stabilization of amorphous solid dispersion: a molecular simulation study. Ind Eng Chem Res. 2017;56(44):12698–707.

    Article  CAS  Google Scholar 

  47. Liu J, Cao F, Zhang C, Ping Q. Use of polymer combinations in the preparation of solid dispersions of a thermally unstable drug by hot-melt extrusion. Acta Pharm Sin B. 2013;3(4):263–72.

    Article  Google Scholar 

  48. Meng F, Dave V, Chauhan H. Qualitative and quantitative methods to determine miscibility in amorphous drug–polymer systems. Eur J Pharm Sci. 2015;77:106–11.

    Article  PubMed  CAS  Google Scholar 

  49. Yoo SU, Krill SL, Wang Z, Telang C. Miscibility/stability considerations in binary solid dispersion systems composed of functional excipients towards the design of multi-component amorphous systems. J Pharm Sci. 2009;98(12):4711–23.

    Article  PubMed  CAS  Google Scholar 

  50. Barton AFM. Solubility parameters. Chem Rev. 1975;75(6):731–53.

    Article  CAS  Google Scholar 

  51. Bugay DE. Characterization of the solid-state: spectroscopic techniques. Adv Drug Deliv Rev. 2001;48(1):43–65.

    Article  PubMed  CAS  Google Scholar 

  52. Ewing AV, Clarke GS, Kazarian SG. Stability of indomethacin with relevance to the release from amorphous solid dispersions studied with atr-ftir spectroscopic imaging. Eur J Pharm Sci. 2014;60(1449):64–71.

    Article  PubMed  CAS  Google Scholar 

  53. Paudel A, Geppi M, Mooter GVD. Structural and dynamic properties of amorphous solid dispersions: The role of solid-state nuclear magnetic resonance spectroscopy and relaxometry. J Pharm Sci. 2014;103(9):2635–62.

    Article  PubMed  CAS  Google Scholar 

  54. Li J, Zhao J, Tao L, Wang J, Waknis V, Pan D, et al. The effect of polymeric excipients on the physical properties and performance of amorphous dispersions: Part i, free volume and glass transition. Pharm Res. 2015;32(2):500–15.

    Article  PubMed  CAS  Google Scholar 

  55. Penumetcha SS, Gutta LN, Dhanala H, Yamili S, Challa S, Rudraraju S, et al. Hot melt extruded aprepitant-soluplus® solid dispersion: preformulation considerations, stability and in-vitro study. Drug Dev Ind Pharm. 2016;42(10):1609–20.

    Article  PubMed  CAS  Google Scholar 

  56. Baird JA, Taylor LS. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev. 2012;64(5):396.

    Article  PubMed  CAS  Google Scholar 

  57. Gupta J, Nunes C, Vyas S, Jonnalagadda S. Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations. J Phys Chem B. 2011;115(9):2014–23.

    Article  PubMed  CAS  Google Scholar 

  58. M M DJM, AP M JP, MJ S DD. Drug-polymer intermolecular interactions in hot-melt extruded solid dispersions. Int J Pharm. 2013;443(1–2):199.

    Google Scholar 

  59. Papantonopoulos SA. In silico modelling of drug-polymer interactions for pharmaceutical formulations. J R Soc Interface. 2010;7 Suppl 4(Suppl_4):S423.

    Google Scholar 

  60. Ouyang D. Investigating the molecular structures of solid dispersions by the simulated annealing method. Chem Phys Lett. 2012;554(554):177–84.

    Article  CAS  Google Scholar 

  61. Li N, Gilpin CJ, Taylor LS. Understanding the impact of water on the miscibility and microstructure of amorphous solid dispersions: an afm–lcr and tem–edx study. Mol Pharm. 2017;14(5):1691–705.

    Article  PubMed  CAS  Google Scholar 

  62. Baghel S, Cathcart H, O'Reilly NJ. Polymeric amorphous solid dispersions: A review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class ii drugs. J Pharm Sci. 2016;47(42):2527–44.

    Article  CAS  Google Scholar 

  63. Nishi T, Wang TT. Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)-poly(methyl methacrylate) mixtures. Macromolecules. 2006;8(6):909–15.

    Article  Google Scholar 

  64. Flory PJ. Principles of polymer chemistry. Ithaca: Cornell University Press; 1953.

    Google Scholar 

  65. Marsac PJ, Shamblin SL, Taylor LS. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res. 2006;23(10):2417–26.

    Article  PubMed  CAS  Google Scholar 

  66. Pina MF, Zhao M, Pinto JF, Sousa JJ, Craig DQ. The influence of drug physical state on the dissolution enhancement of solid dispersions prepared via hot-melt extrusion: a case study using olanzapine. J Pharm Sci. 2014;103(4):1214–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Nishi T, Wang TT. Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)-poly(methyl methacrylate) mixtures. Macromolecules. 1975;8(6):909–15.

    Article  CAS  Google Scholar 

  68. Yi T, Wan J, Xu H, Yang X. A new solid self-microemulsifying formulation prepared by spray-drying to improve the oral bioavailability of poorly water soluble drugs. Eur J Pharm Biopharm. 2008;70(2):439–44.

    Article  PubMed  CAS  Google Scholar 

  69. Rumondor ACF, Ivanisevic I, Bates S, Alonzo DE, Taylor LS. Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm Res. 2009;26(11):2523–34.

    Article  PubMed  CAS  Google Scholar 

  70. Verma S, Rudraraju VS. A systematic approach to design and prepare solid dispersions of poorly water-soluble drug. AAPS PharmSciTech. 2014;15(3):641–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Thakral S, Thakral NK. Prediction of drug-polymer miscibility through the use of solubility parameter based flory-huggins interaction parameter and the experimental validation: peg as model polymer. J Pharm Sci. 2013;102(7):2254–63.

    Article  PubMed  CAS  Google Scholar 

  72. Tian YW, Jones DS, Andrews GP. An investigation into the role of polymeric carriers on crystal growth within amorphous solid dispersion systems. Mol Pharm. 2015;12(4):1180–92.

    Article  PubMed  CAS  Google Scholar 

  73. Yang Z, Nollenberger K, Albers J, Craig D, Qi S. Molecular indicators of surface and bulk instability of hot melt extruded amorphous solid dispersions. Pharm Res. 2015;32(4):1210–28.

    Article  PubMed  CAS  Google Scholar 

  74. Zhao Y, Inbar P, Chokshi HP, Malick AW, Choi DS. Prediction of the thermal phase diagram of amorphous solid dispersions by flory-huggins theory. J Pharm Sci. 2011;100(8):3196–207.

    Article  PubMed  CAS  Google Scholar 

  75. Prudic A, Ji Y, Sadowski G. Thermodynamic phase behavior of api/polymer solid dispersions. Mol Pharm. 2014;11(7):2294–304.

    Article  PubMed  CAS  Google Scholar 

  76. Schäfer E, Sadowski G. Liquid–liquid equilibria of systems with linear aldehydes. experimental data and modeling with pcp-saft. Ind Eng Chem Res. 2012;51(44):14525–34.

    Article  CAS  Google Scholar 

  77. Gross J, Sadowski G. Application of the perturbed-chain saft equation of state to associating systems. Ind Eng Chem Res. 2002;41(22):5510–5.

    Article  CAS  Google Scholar 

  78. Prudic A, Lesniak AK, Ji Y, Sadowski G. Thermodynamic phase behaviour of indomethacin/plga formulations. Eur J Pharm Biopharm. 2015;93:88–94.

    Article  PubMed  CAS  Google Scholar 

  79. Gross J, Spuhl O, Tumakaka F, Sadowski G. Modeling copolymer systems using the perturbed-chain saft equation of state. Ind Eng Chem Res. 2003;42(6):1266–74.

    Article  CAS  Google Scholar 

  80. Kouskoumvekaki IA, von Solms N, Lindvig T, Michelsen ML, Kontogeorgis GM. Novel method for estimating pure-component parameters for polymers: application to the pc-saft equation of state. Ind Eng Chem Res. 2004;43(11):2830–8.

    Article  CAS  Google Scholar 

  81. Luebbert C, Sadowski G. Moisture-induced phase separation and recrystallization in amorphous solid dispersions. Int J Pharm. 2017;532(1):635–46.

    Article  PubMed  CAS  Google Scholar 

  82. Prudic A, Ji Y, Luebbert C, Sadowski G. Influence of humidity on the phase behavior of api/polymer formulations. Eur J Pharm Biopharm. 2015;94:352–62.

    Article  PubMed  CAS  Google Scholar 

  83. Luebbert C, Huxoll F, Sadowski G. Amorphous-amorphous phase separation in api/polymer formulations. Molecules. 2017;22(2)

  84. Yang M, Wang P, Huang CY, Ku MS, Liu HJ, Gogos C. Solid dispersion of acetaminophen and poly(ethylene oxide) prepared by hot-melt mixing. Int J Pharm. 2010;395(1–2):53–61.

    Article  PubMed  CAS  Google Scholar 

  85. Maru SM, de Matas M, Kelly A, Paradkar A. Characterization of thermal and rheological properties of zidovidine, lamivudine and plasticizer blends with ethyl cellulose to assess their suitability for hot melt extrusion. Eur J Pharm Sci. 2011;44(4):471–8.

    Article  PubMed  CAS  Google Scholar 

  86. Amharar Y, Curtin V, Gallagher KH, Healy AM. Solubility of crystalline organic compounds in high and low molecular weight amorphous matrices above and below the glass transition by zero enthalpy extrapolation. Int J Pharm. 2014;472(1–2):241–7.

    Article  PubMed  CAS  Google Scholar 

  87. Gramaglia D, Conway BR, Kett VL, Malcolm RK, Batchelor HK. High speed dsc (hyper-dsc) as a tool to measure the solubility of a drug within a solid or semi-solid matrix. Int J Pharm. 2005;301:1–2):1-5.

    Article  PubMed  CAS  Google Scholar 

  88. Ford JL, Mann TE. Fast-scan dsc and its role in pharmaceutical physical form characterisation and selection. Adv Drug Deliv Rev. 2012;64(5):422–30.

    Article  PubMed  CAS  Google Scholar 

  89. Jones DS, Tian Y, Abu-Diak O, Andrews GP. Pharmaceutical applications of dynamic mechanical thermal analysis. Adv Drug Deliv Rev. 2012;248(5):440–8.

    Article  CAS  Google Scholar 

  90. Qi S, Belton P, Nollenberger K, Clayden N, Reading M, Craig DQM. Characterisation and prediction of phase separation in hot-melt extruded solid dispersions: a thermal, microscopic and nmr relaxometry study. Pharm Res. 2010;27(9):1869–83.

    Article  PubMed  CAS  Google Scholar 

  91. Mahieu A, Willart JF, Dudognon E, Danede F, Descamps M. A new protocol to determine the solubility of drugs into polymer matrixes. Mol Pharm. 2013;10(2):560–6.

    Article  PubMed  CAS  Google Scholar 

  92. Al-Obaidi H, Lawrence MJ, Shah S, Moghul H, Al-Saden N, Bari F. Effect of drug-polymer interactions on the aqueous solubility of milled solid dispersions. Int J Pharm. 2013;446(1–2):100–5.

    Article  PubMed  CAS  Google Scholar 

  93. Ng YC, Yang ZY, McAuley WJ, Qi S. Stabilisation of amorphous drugs under high humidity using pharmaceutical thin films. Eur J Pharm Biopharm. 2013;84(3):555–65.

    Article  PubMed  CAS  Google Scholar 

  94. Yoshioka M, Hancock BC, Zografi G. Crystallization of indomethacin from the amorphous state below and above its glass-transition temperature. J Pharm Sci. 1994;83(12):1700–5.

    Article  PubMed  CAS  Google Scholar 

  95. Duddu SP, DalMonte PR. Effect of glass transition temperature on the stability of lyophilized formulations containing a chimeric therapeutic monoclonal antibody. Pharm Res. 1997;14(5):591–5.

    Article  PubMed  CAS  Google Scholar 

  96. Bergese P, Colombo I, Gervasoni D, Depero LE. Melting of nanostructured drugs embedded into a polymeric matrix. J Phys Chem B. 2004;108(40):15488–93.

    Article  CAS  Google Scholar 

  97. Z A AP. G VdM. Can compression induce demixing in amorphous solid dispersions? A case study of naproxen-pvp k25. Eur J Pharm Biopharm. 2012;81(1):207.

    Article  CAS  Google Scholar 

  98. Yang ZY, Nollenberger K, Albers J, Moffat J, Craig D, Qi S. The effect of processing on the surface physical stability of amorphous solid dispersions. Eur J Pharm Biopharm. 2014;88(3):897–908.

    Article  PubMed  CAS  Google Scholar 

  99. Craig DQM, Royall PG, Kett VL, Hopton ML. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int J Pharm. 1999;179(2):179–207.

    Article  PubMed  CAS  Google Scholar 

  100. Hilden LR, Morris KR. Physics of amorphous solids. J Pharm Sci. 2004;93(1):3–12.

    Article  PubMed  CAS  Google Scholar 

  101. Aso Y, Yoshioka S, Kojima S. Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly(vinylpyrrolidone) solid dispersions. J Pharm Sci. 2004;93(2):384–91.

    Article  PubMed  CAS  Google Scholar 

  102. Roudaut G, Simatos D, Champion D, Contreras-Lopez E, Meste ML. Molecular mobility around the glass transition temperature: a mini review. Innovative Food Sci Emerg Technol. 2004;5(2):127–34.

    Article  CAS  Google Scholar 

  103. Mehta M, Kothari K, Ragoonanan V, Suryanarayanan R. Effect of water on molecular mobility and physical stability of amorphous pharmaceuticals. Mol Pharm. 2016;13(4):1339–46.

    Article  PubMed  CAS  Google Scholar 

  104. Gordon JM, Rouse GB, Gibbs JH, Jr WMR. The composition dependence of glass transition properties. J Chem Phys. 1977;66(11):4971–6.

    Article  CAS  Google Scholar 

  105. Alhalaweh A, Alzghoul A, Mahlin D, Bergström CA. Physical stability of drugs after storage above and below the glass transition temperature: relationship to glass-forming ability. Int J Pharm. 2015;495(1):312–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Hodge IM. Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 6. Adam-gibbs formulation of nonlinearity. Macromolecules. 1987;20(11):2897–908.

    Article  CAS  Google Scholar 

  107. Claudy P, Jabrane S, Létoffé JM. Annealing of a glycerol glass: Enthalpy, fictive temperature and glass transition temperature change with annealing parameters. Thermochim Acta. 1997;293(293):1–11.

    Article  CAS  Google Scholar 

  108. Badrinarayanan P, Zheng W, Li QX, Simon SL. The glass transition temperature versus the fictive temperature. J Non-Cryst Solids. 2007;353(26):2603–12.

    Article  CAS  Google Scholar 

  109. Bohmer R, Ngai KL, Angell CA, Plazek DJ. Nonexponential relaxations in strong and fragile glass formers. J Chem Phys. 1993;99(5):4201–9.

    Article  Google Scholar 

  110. Craig DQM, Barsnes M, Royall PG, Kett VL. An evaluation of the use of modulated temperature dsc as a means of assessing the relaxation behaviour of amorphous lactose. Pharm Res. 2000;17(6):696–700.

    Article  PubMed  CAS  Google Scholar 

  111. Viciosa MT, Ramos JJM, Diogo HP. The slow relaxation dynamics in the amorphous pharmaceutical drugs cimetidine, nizatidine, and famotidine. J Pharm Sci. 2016;105(12):3573–84.

    Article  PubMed  CAS  Google Scholar 

  112. Tripathi P, Romanini M, Tamarit JL, Macovez R. Collective relaxation dynamics and crystallization kinetics of the amorphous biclotymol antiseptic. Int J Pharm. 2015;495(1):420–7.

    Article  PubMed  CAS  Google Scholar 

  113. Shete G, Khomane KS, Bansal AK. Molecular relaxation behavior and isothermal crystallization above glass transition temperature of amorphous hesperetin. J Pharm Sci. 2014;103(1):167–78.

    Article  PubMed  CAS  Google Scholar 

  114. Alem N, Beezer AE, Gaisford S. Quantifying the rates of relaxation of binary mixtures of amorphous pharmaceuticals with isothermal calorimetry. Int J Pharm. 2010;399(1–2):12–8.

    Article  PubMed  CAS  Google Scholar 

  115. Wyttenbach N, Kuentz M. Glass-forming ability of compounds in marketed amorphous drug products. Eur J Pharm Biopharm. 2017;112:204–8.

    Article  PubMed  CAS  Google Scholar 

  116. Edueng K, Mahlin D, Larsson P, Bergstrom CAS. Mechanism-based selection of stabilization strategy for amorphous formulations: insights into crystallization pathways. J Control Release. 2017;256:193–202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Mahlin D, Bergstrom CA. Early drug development predictions of glass-forming ability and physical stability of drugs. Eur J Pharm Sci. 2013;49(2):323–32.

    Article  PubMed  CAS  Google Scholar 

  118. Hellrup J, Alderborn G, Mahlin D. Inhibition of recrystallization of amorphous lactose in nanocomposites formed by spray-drying. J Pharm Sci. 2015;104(11):3760–9.

    Article  PubMed  CAS  Google Scholar 

  119. Weuts I, Van Dycke F, Voorspoels J, De Cort S, Stokbroekx S, Leemans R, et al. Physicochemical properties of the amorphous drug, cast films, and spray dried powders to predict formulation probability of success for solid dispersions: Etravirine. J Pharm Sci. 2011;100(1):260–74.

    Article  PubMed  CAS  Google Scholar 

  120. Karmwar P, Graeser K, Gordon KC, Strachan CJ, Rades T. Investigation of properties and recrystallisation behaviour of amorphous indomethacin samples prepared by different methods. Int J Pharm. 2011;417(1–2):94–100.

    Article  PubMed  CAS  Google Scholar 

  121. Joe JH, Lee WM, Park YJ, Joe KH, Oh DH, Seo YG, et al. Effect of the solid-dispersion method on the solubility and crystalline property of tacrolimus. Int J Pharm. 2010;395(1):161–6.

    Article  PubMed  CAS  Google Scholar 

  122. Benes M, Pekarek T, Beranek J, Havlicek J, Krejcik L, Simek M, et al. Methods for the preparation of amorphous solid dispersions - a comparative study. J Drug Deliv Sci Tec. 2017;38:125–34.

    Article  CAS  Google Scholar 

  123. Yang ZY, Nollenberger K, Albers J, Qi S. Molecular implications of drug-polymer solubility in understanding the destabilization of solid dispersions by milling. Mol Pharm. 2014;11(7):2453–65.

    Article  PubMed  CAS  Google Scholar 

  124. Li J, Fan N, Wang X, Li C, Sun M, Wang J, et al. Interfacial interaction track of amorphous solid dispersions established by water-soluble polymer and indometacin. Eur J Pharm Sci. 2017;106:244–53.

    Article  PubMed  CAS  Google Scholar 

  125. Ueda H, Aikawa S, Kashima Y, Kikuchi J, Ida Y, Tanino T, et al. Anti-plasticizing effect of amorphous indomethacin induced by specific intermolecular interactions with pva copolymer. J Pharm Sci. 2014;103(9):2829–38.

    Article  PubMed  CAS  Google Scholar 

  126. Wang B, Wang D, Zhao S, Huang X, Zhang J, Lv Y, et al. Evaluate the ability of pvp to inhibit crystallization of amorphous solid dispersions by density functional theory and experimental verify. Eur J Pharm Sci. 2017;96:45–52.

    Article  PubMed  CAS  Google Scholar 

  127. Tobyn M, Brown J, Dennis AB, Fakes M, Gao Q, Gamble J, et al. Amorphous drug-pvp dispersions: application of theoretical, thermal and spectroscopic analytical techniques to the study of a molecule with intermolecular bonds in both the crystalline and pure amorphous state. J Pharm Sci. 2009;98(9):3456–68.

    Article  PubMed  CAS  Google Scholar 

  128. Tang XC, Pikal MJ, Taylor LS. A spectroscopic investigation of hydrogen bond patterns in crystalline and amorphous phases in dihydropyridine calcium channel blockers. Pharm Res. 2002;19(4):477–83.

    Article  PubMed  CAS  Google Scholar 

  129. Telang C, Mujumdar S, Mathew M. Improved physical stability of amorphous state through acid base interactions. J Pharm Sci. 2009;98(6):2149–59.

    Article  PubMed  CAS  Google Scholar 

  130. Song Y, Zemlyanov D, Chen X, Su Z, Nie H, Lubach JW, et al. Acid-base interactions in amorphous solid dispersions of lumefantrine prepared by spray-drying and hot-melt extrusion using x-ray photoelectron spectroscopy. Int J Pharm. 2016;514(2):456–64.

    Article  PubMed  CAS  Google Scholar 

  131. Mahlin D, Berggren J, Alderborn G, Engstrom S. Moisture-induced surface crystallization of spray-dried amorphous lactose particles studied by atomic force microscopy. J Pharm Sci. 2004;93(1):29–37.

    Article  PubMed  CAS  Google Scholar 

  132. Lehmkemper K, Kyeremateng SO, Heinzerling O, Degenhardt M, Sadowski G. Long-term physical stability of pvp- and pvpva-amorphous solid dispersions. Mol Pharm. 2017;14(1):157–71.

    Article  PubMed  CAS  Google Scholar 

  133. Konno H, Taylor LS. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci. 2006;95(12):2692–705.

    Article  PubMed  CAS  Google Scholar 

  134. Wlodarski K, Sawicki W, Kozyra A, Tajber L. Physical stability of solid dispersions with respect to thermodynamic solubility of tadalafil in pvp-va. Eur J Pharm Biopharm. 2015;96:237–46.

    Article  PubMed  CAS  Google Scholar 

  135. Li WJ, Buckton G. Using dvs-nir to assess the water sorption behaviour and stability of a griseofulvin/pvp k30 solid dispersion. Int J Pharm. 2015;495(2):999–1004.

    Article  PubMed  CAS  Google Scholar 

  136. Choi JS. Enhanced stability and solubility of ph-dependent drug, telmisartan achieved by solid dispersion. J Drug Deliv Sci Tec. 2017;37:194–203.

    Article  CAS  Google Scholar 

  137. Lamm MS, Simpson A, Mcnevin M, Frankenfeld C, Nay R, Variankaval N. Probing the effect of drug loading and humidity on the mechanical properties of solid dispersions with nanoindentation: antiplasticization of a polymer by a drug molecule. Mol Pharm. 2012;9(11):3396.

    Article  PubMed  CAS  Google Scholar 

  138. Lehmkemper K, Kyeremateng SO, Bartels M, Degenhardt M, Sadowski G. Physical stability of api/polymer-blend amorphous solid dispersions. Eur J Pharm Biopharm. 2018;124:147–57.

    Article  PubMed  CAS  Google Scholar 

  139. Rumondor AC, Stanford LA, Taylor LS. Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions. Pharm Res. 2009;26(12):2599.

    Article  PubMed  CAS  Google Scholar 

  140. Yang Z, Nollenberger K, Albers J, Craig D, Qi S. Microstructure of an immiscible polymer blend and its stabilization effect on amorphous solid dispersions. Mol Pharm. 2013;10(7):2767–80.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to thank Dr. Sheng Qi at University of East Anglia for the previous discussion. This work is supported by the National Natural Science Foundation of China [Grant numbers 81,603,059]; “Jiangsu Shuangchuang” Program; and Top-notch Academic Programs Project of Jiangsu Higher Education Institutions [Grant numbers PPZY2015B146].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyi Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Hu, Y., Liu, L. et al. Physical Stability of Amorphous Solid Dispersions: a Physicochemical Perspective with Thermodynamic, Kinetic and Environmental Aspects. Pharm Res 35, 125 (2018). https://doi.org/10.1007/s11095-018-2408-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2408-3

Key words

Navigation