Skip to main content
Log in

Immediate Release 3D-Printed Tablets Produced Via Fused Deposition Modeling of a Thermo-Sensitive Drug

  • Research Paper
  • Theme: 3D Printing of Pharmaceutical and Medical Applications: A New Era
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Dissolution speeds of tablets printed via Fused Deposition Modeling (FDM) so far are significantly lower compared to powder or granule pressed immediate release tablets. The aim of this work was to print an actual immediate release tablet by choosing suitable polymers and printing designs, also taking into account lower processing temperatures (below 100°C) owing to the used model drug pantoprazole sodium.

Methods

Five different pharmaceutical grade polymers polyvinylpyrrolidone (PVP K12), polyethylene glycol 6000 (PEG 6000), Kollidon® VA64, polyethylene glycol 20,000 (PEG 20,000) and poloxamer 407 were successfully hot-melt-extruded to drug loaded filaments and printed to tablets at the required low temperatures.

Results

Tablets with the polymers PEG 6000 and PVP K12 and with a proportion of 10% pantoprazole sodium (w/w) demonstrated a fast drug release that was completed within 29 min or 10 min, respectively. By reducing the infill rate of PVP tablets to 50% and thereby increase the tablet porosity it was even possible to reduce the mean time for total drug release to only 3 min.

Conclusions

The knowledge acquired through this work might be very beneficial for future FDM applications in the field of immediate release tablets especially with respect to thermo-sensitive drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

FDM:

Fused deposition modeling

HME:

Hot-melt extrusion

HPC:

Hydroxypropyl cellulose

PBS:

Phosphate buffer solution (according to USP)

PEG:

Polyethylene glycol

PEO:

Polyethylene oxide

PLA:

Polylactic acid

PVA:

Polyvinyl alcohol

PVP:

Polyvinylpyrrolidone

TEC:

Triethyl citrate

XRPD:

X-ray powder diffraction

References

  1. Gupta A, Hunt RL, Shah RB, Sayeed VA, Khan MA. Disintegration of highly soluble immediate release tablets: a surrogate for dissolution. AAPS PharmSciTech. 2009;10(2):495–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Jonathan G, Karim A. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499(1–2):376–94.

    CAS  Google Scholar 

  3. Zema L, Melocchi A, Maroni A, Gazzaniga A. Three-dimensional printing of medicinal products and the challenge of personalized therapy. J Pharm Sci. 2017;106(7):1697–705.

    Article  PubMed  CAS  Google Scholar 

  4. Sandler N, Preis M. Printed drug-delivery Systems for Improved Patient Treatment. Trends Pharmacol Sci. 2016;37(12):1070–80.

    Article  PubMed  CAS  Google Scholar 

  5. Aprecia Pharmaceuticals. Spritam® website. www.spritam.com. Accessed 15 Jun 2017.

  6. First 3D-printed pill. Nat Biotechnol 2015;33(10):1014.

  7. Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm. 2015;96:380–7.

    Article  PubMed  CAS  Google Scholar 

  8. Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11–7.

    Article  PubMed  CAS  Google Scholar 

  9. Goyanes A, Kobayashi M, Martínez-Pacheco R, Gaisford S, Basit AW. Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. Int J Pharm. 2016;514(1):290–5.

    Article  PubMed  CAS  Google Scholar 

  10. Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657–63.

    Article  PubMed  CAS  Google Scholar 

  11. Goyanes A, Wang J, Buanz A, Martínez-Pacheco R, Telford R, Gaisford S, et al. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm. 2015;12(11):4077–84.

    Article  PubMed  CAS  Google Scholar 

  12. Okwuosa TC, Pereira BC, Arafat B, Cieszynska M, Isreb A, Alhnan MA. Fabricating a Shell-Core delayed release tablet using dual FDM 3D printing for patient-Centred therapy. Pharm Res. 2017;34(2):427–37.

    Article  PubMed  CAS  Google Scholar 

  13. Gioumouxouzis CI, Katsamenis OL, Bouropoulos N, Fatouros DG. 3D printed oral solid dosage forms containing hydrochlorothiazide for controlled drug delivery. J Drug Delivery Sci Technol. 2017;40:164–71.

    Article  CAS  Google Scholar 

  14. Goyanes A, Buanz AB, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157–62.

    Article  PubMed  CAS  Google Scholar 

  15. Goyanes A, Buanz AB, Basit AW, Gaisford S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int J Pharm. 2014;476(1–2):88–92.

    Article  PubMed  CAS  Google Scholar 

  16. Sadia M, Sośnicka A, Arafat B, Isreb A, Ahmed W, Kelarakis A, et al. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharm. 2016;513(1–2):659–68.

    Article  PubMed  CAS  Google Scholar 

  17. Okwuosa TC, Stefaniak D, Arafat B, Isreb A, Wan K-W, Alhnan MA. A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets. Pharm Res. 2016;33(11):2704–12.

    Article  PubMed  CAS  Google Scholar 

  18. Goyanes A, Chang H, Sedough D, Hatton GB, Wang J, Buanz A, et al. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm. 2015;496(2):414–20.

    Article  PubMed  CAS  Google Scholar 

  19. Sauer D, Cerea M, DiNunzio J, McGinity J. Dry powder coating of pharmaceuticals: a review. Int J Pharm. 2013;457(2):488–502.

    Article  PubMed  CAS  Google Scholar 

  20. USP 40. U.S. Pharmacopoeia-National Formulary [USP 40 NF 35]: Monograph Pantoprazole Sodium Delayed-Release Tablets.

  21. Kempin W, Franz C, Koster L-C, Schneider F, Bogdahn M, Weitschies W, et al. Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants. Eur J Pharm Biopharm. 2017;115:84–93.

    Article  PubMed  CAS  Google Scholar 

  22. Stedman CAM, Barclay ML. Review article: comparison of the pharmacokinetics, acid suppression and efficacy of proton pump inhibitors. Aliment Pharmacol Ther. 2000;14(8):963–78.

    Article  PubMed  CAS  Google Scholar 

  23. Witschi C, Doelker E. Residual solvents in pharmaceutical products: acceptable limits, influences on physicochemical properties, analytical methods and documented values. Eur J Pharm Biopharm. 1997;43(3):215–42.

    Article  CAS  Google Scholar 

  24. Rosenblatt KM, Bunjes H, Seeling A, Oelschläger H. Investigations on the thermal behavior of omeprazole and other sulfoxides. Pharmazie. 2005;60(7):503–7.

    PubMed  CAS  Google Scholar 

  25. Zupancic V, Ograjsek N, Kotar-Jordan B, Vrecer F. Physical characterization of pantoprazole sodium hydrates. Int J Pharm. 2005;291(1–2):59–68.

    Article  PubMed  CAS  Google Scholar 

  26. Patil H, Tiwari RV, Repka MA. Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS Pharm Sci Tech. 2016;17(1):20–42.

    Article  CAS  Google Scholar 

  27. Perissutti B, Newton JM, Podczeck F, Rubessa F. Preparation of extruded carbamazepine and PEG 4000 as a potential rapid release dosage form. Eur J Pharm Biopharm. 2002;53(1):125–32.

    Article  PubMed  CAS  Google Scholar 

  28. Ramanath HS, Chua CK, Leong KF, Shah KD. Melt flow behaviour of poly-epsilon-caprolactone in fused deposition modelling. J Mater Sci Mater Med. 2008;19(7):2541–50.

    Article  PubMed  CAS  Google Scholar 

  29. Alsulays BB, Park J-B, Alshehri SM, Morott JT, Alshahrani SM, Tiwari RV, et al. Influence of molecular weight of carriers and processing parameters on the Extrudability, drug release, and stability of Fenofibrate formulations processed by hot-melt extrusion. J Drug Delivery Sci Technol. 2015;29:189–98.

    Article  CAS  Google Scholar 

  30. Gupta SS, Meena A, Parikh T, Serajuddin ATM. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion - I: Polyvinylpyrrolidone and related polymers. J Excipients Food Chem. 2014;5(1):32–45.

    Google Scholar 

  31. Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer-surfactant combinations using solubility parameters and testing the processability. Int J Pharm. 2007;328(2):119–29.

    Article  PubMed  CAS  Google Scholar 

  32. Alsulays BB, Kulkarni V, Alshehri SM, Almutairy BK, Ashour EA, Morott JT, et al. Preparation and evaluation of enteric coated tablets of hot-melt extruded lansoprazole. Drug Dev Ind Pharm. 2017;43(5):789–96.

    Article  PubMed  CAS  Google Scholar 

  33. Li L, AbuBaker O, Shao ZJ. Characterization of poly(ethylene oxide) as a drug carrier in hot-melt extrusion. Drug Dev Ind Pharm. 2006;32(8):991–1002.

    Article  PubMed  CAS  Google Scholar 

  34. Martinez-Marcos L, Lamprou DA, McBurney RT, Halbert GW. A novel hot-melt extrusion formulation of albendazole for increasing dissolution properties. Int J Pharm. 2016;499(1–2):175–85.

    Article  PubMed  CAS  Google Scholar 

  35. Pina MT, Zhao M, Pinto JF, Sousa JJ, DQM C. The influence of drug physical state on the dissolution enhancement of solid dispersions prepared via hot-melt extrusion: a case study using olanzapine. J Pharm Sci. 2014;103(4):1214–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Council of Europe, ed. European Pharmacopoeia 9.1: pantoprazole sodium sesquihydrate; 2017.

  37. Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23(12):2709–28.

    Article  PubMed  CAS  Google Scholar 

  38. Djuris J, Ioannis N, Ibric S, Djuric Z, Kachrimanis K. Effect of composition in the development of carbamazepine hot-melt extruded solid dispersions by application of mixture experimental design. J Pharm Pharmacol. 2014;66(2):232–43.

    Article  PubMed  CAS  Google Scholar 

  39. Dumortier G, El Kateb N, Sahli M, Kedjar S, Boulliat A, Chaumeil JC. Development of a thermogelling ophthalmic formulation of cysteine. Drug Dev Ind Pharm. 2006;32(1):63–72.

    Article  PubMed  CAS  Google Scholar 

  40. Zecevic DE, Wagner KG. Rational development of solid dispersions via hot-melt extrusion using screening, material characterization, and numeric simulation tools. J Pharm Sci. 2013;102(7):2297–310.

    Article  PubMed  CAS  Google Scholar 

  41. Maniruzzaman M, Rana MM, Boateng JS, Mitchell JC, Douroumis D. Dissolution enhancement of poorly water-soluble APIs processed by hot-melt extrusion using hydrophilic polymers. Drug Dev Ind Pharm. 2013;39(2):218–27.

    Article  PubMed  CAS  Google Scholar 

  42. Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231(2):131–44.

    Article  PubMed  CAS  Google Scholar 

  43. LaFountaine JS, Prasad LK, Brough C, Miller DA, McGinity JW, Williams RO. Thermal processing of PVP- and HPMC-based amorphous solid dispersions. AAPS PharmSciTech. 2016;17(1):120–32.

    Article  PubMed  CAS  Google Scholar 

  44. Chai X, Chai H, Wang X, Yang J, Li J, Zhao Y, et al. Fused deposition modeling (FDM) 3D printed tablets for Intragastric floating delivery of Domperidone. Sci Rep. 2017;7(1):2829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tagami T, Fukushige K, Ogawa E, Hayashi N, Ozeki T. 3D printing factors important for the fabrication of Polyvinylalcohol filament-based tablets. Biol Pharm Bull. 2017;40(3):357–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Seidlitz.

Additional information

Guest Editor: Dennis Douroumis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kempin, W., Domsta, V., Grathoff, G. et al. Immediate Release 3D-Printed Tablets Produced Via Fused Deposition Modeling of a Thermo-Sensitive Drug. Pharm Res 35, 124 (2018). https://doi.org/10.1007/s11095-018-2405-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2405-6

KEY WORDS

Navigation