Skip to main content
Log in

Structural Stability of Recombinant Human Growth Hormone (r-hGH) as a Function of Polymer Surface Properties

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Despite the fact that r-hGH was first approved for use by FDA in 1995 and the conventional dosage form in the market has a limitation of daily subcutaneous injections, there remains a lack of sustained delivery system in the market. Nutropin depot, a long-acting dosage form of r-hGH was approved for marketing by FDA in 1999, however, it was discontinued in 2004. Since then, unabating efforts have been made to develop biodegradable polymer based formulations for r-hGH delivery. However, grey area is the comprehension of structural stability of r-hGH at an interface with the polymer and it is of utmost important to attain safe and efficacious sustained delivery system. The purpose of this study was to evaluate the changes in structure of r-hGH upon adsorption at biodegradable PLGA nanoparticles of different hydrophobicity as a function of pH.

Methods

DLS, fluorescence spectroscopy, and CD were collectively employed to evaluate structural changes in r-hGH.

Results

The studies revealed that r-hGH is most stable with low to high hydrophobicity PLGA grades under pH 7.2 followed by 5.3.

Conclusion

Overall, the nature and magnitude of structural changes observed has a strong dependence on the pH and differences and degree of hydrophobicity of PLGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

% w/v :

Percentage weight by volume

BSA:

Bovine serum albumin

CD:

Circular dichroism

Dh:

Hydrodynamic diameter

DLS:

Dynamic light scattering

g/cm3 :

Gram per cubic centimeter

kDa:

Kilodalton

MES:

2-(N-morpholine)-ethane sulphonic acid

mg:

Milligram

min:

Minute

ml:

Milliliter

MW:

Molecular weight

MWCO:

Molecular weight cut off

nm:

Nanometer

PDI:

Polydispersity index

pI:

Isoelectric point

PLGA 5050 1A:

Poly (lactic-co-glycolic) acid uncapped polymer, ~ 10 kDa

PLGA 5050 5E:

Poly (lactic-co-glycolic) acid ester endcapped polymer, ~ 50 kDa

PLGA 8515 3 CE:

Poly (lactic-co-glycolic) acid ester endcapped polymer, ~30 kDa

PS:

Polystyrene

r-hGH:

Recombinant human growth hormone

SD:

Standard Deviation

Trp:

Tryptophan

Tyr:

Tyrosine

UV:

Ultraviolet

V:

Volume

г:

Surface Coverage

гPL:

Plateau Surface Coverage

References

  1. Cutfield WS, Derraik JGB, Gunn AJ, Reid K, Delany T, Robinson E, et al. Non-compliance with growth hormone treatment in children is common and impairs linear growth. PLoS One. 2011;6(1):e16223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jahan ST, Haddadi A. Investigation and optimization of formulation parameters on preparation of targeted anti-CD205 tailored PLGA nanoparticles. Int J Nanomedicine. 2015;10(1):7371–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Castellanos IJ, Cruz G, Crespo R, Greibenow K. Encapsulation-induced aggregation and loss in activity of y-chymotrypsin and their prevention. J Control Release. 2002;81:307–19.

    Article  CAS  PubMed  Google Scholar 

  4. Schellekens H. How to predict and prevent the immunogenicity of therapeutic proteins? Biotechnol Annu Rev. 2008;14:191–202.

    Article  CAS  PubMed  Google Scholar 

  5. Buijs J, David WB, Hlady V. Human growth hormone adsorption kinetics and conformation on self-assembled monolayers. Langmuir. 1998;14(2):335–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Motheram R, Gupta PK. Behavior of Recombinant Human Growth Hormone at Solid/Liquid Interfaces. University of the Sciences in Philadelphia, ProQuest Dissertations Publishing. 2007;3264503. (These are internal data from the doctoral dissertation of a student in Usciences, not peer reviewed).

  7. Kwak HH, Shim WS, Choi MK, Son MK, Kim YJ, Yang HC, et al. Development of a sustained-release recombinant human growth hormone formulation. J Control Release. 2009;137(2):160–5.

    Article  CAS  PubMed  Google Scholar 

  8. Cai Y, Xu M, Yuan M, Liu Z, Yuan W. Developments in human growth hormone preparations: sustained-release, prolonged half-life, novel injection devices, and alternative delivery routes. Int J Nanomedicine. 2014;9(1):3527–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Herbert P, Murphy K, Johnson O, Dong N, Jaworowicz W, Tracy MA, et al. A large-scale process to produce microencapsulated proteins. Pharm Res. 1998;15(2):357–61.

    Article  CAS  PubMed  Google Scholar 

  10. Lakowicz JR. Protein fluorescence. In: Lakowicz JR, editor. Principles of fluorescence spectroscopy. 2nd ed. New York: Kluwer Academic/Plenum; 1999. p. 445–86.

    Chapter  Google Scholar 

  11. Clark SR, Billsten P, Mandenius C-F, Elwing H. Fluorimetric investigation of recombinant human growth hormone adsorbed on silica nanoparticles. Anal Chim Acta. 1994;290:21–6.

    Article  CAS  Google Scholar 

  12. Bewley TA, Brovetto-Cruz J, Li CH. Human pituitary growth hormone. XXI. Physicochemical investigations of the native and reduced-alkylated protein. Biochemistry. 1969;8:4701–8.

    Article  CAS  PubMed  Google Scholar 

  13. Nutropin depot [Somatropin (rDNA origin) for injectable suspension], [package insert]. San Fransisco: Genentech, Inc. 2004. 21075_S008_annotated_OCT 2004.

  14. Desai P, Gupta PK. Adsorption behavior of recombinant human growth hormone at moderately hydrophobic surfaces. University of the Sciences in Philadelphia, ProQuest Dissertations Publishing. 2010;3411393. (These are internal data from the doctoral dissertation of a student in Usciences, not peer reviewed).

  15. Holzwarth G, Doty P. The ultraviolet circular dichroism of polypeptides. J Amer Chem Soc. 1965;87:218–28.

    Article  CAS  Google Scholar 

  16. Greenfield N, Fasman GD. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969;8:4108–16.

    Article  CAS  PubMed  Google Scholar 

  17. Chapman D, Wallach DFH. In: Biological Membranes. Edited by Chapman D. London and N.Y: Academic Press. 1968. pp.125–202.

  18. Bewley TA, Li CH. Human pituitary growth hormone: XXII. The reduction and reoxidation of the hormone. Arch Biochem Biophys. 1970;138:338–46.

    Article  CAS  PubMed  Google Scholar 

  19. Horwitz J, Strickland EH, Billups CB. Analysis of the vibrational structure in the near-ultraviolet circular dichroism and absorption spectra of tyrosine derivatives and ribonuclease-a at 77 deg. K. J Amer Chem Soc. 1970;92:2119–29.

    Article  CAS  Google Scholar 

  20. Gomez-Orellana I, Variano B, Miura-Fraboni J, Milstein S, Paton DR. Thermodynamic characterization of an intermediate state of human growth hormone. Protein Sci. 1998;1:1352–8.

    Article  Google Scholar 

  21. Sirsi SR, Schray RC, Wheatley MA, Lutz GJ. Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Release of poly(ethylene imine)-poly(ethylene glycol) copolymers complexed to oligonucleotides. J Nanobiotechnol. 2009;7:1.

    Article  Google Scholar 

  22. Aloj S, Edelhoch H. The molecular properties of human growth hormone. J Biol Chem. 1972;247(4):1146–52.

    CAS  PubMed  Google Scholar 

  23. Bremer MGEG, Duval J, Norde W, Lyklema J. Electrostatic interactions between immunoglobin (IgG) molecules and a charged sorbent. Colloids Surf A Physicochem Eng Asp. 2004;250:29–42.

    Article  CAS  Google Scholar 

  24. Demanèche S, Chapel JP, Monrozier LJ, Quiquampoix H. Dissimilar pH-dependent adsorption features of bovine serum albumin and alpha-chymotrypsin on mica probed by AFM. Colloids Surf B. 2009;70:226–31.

    Article  Google Scholar 

  25. Höök F, Rodahl M, Kasemo B, Brzezinski P. Proc. Structural changes in hemoglobin during adsorption to solid surfaces: effects of pH, ionic strength, and ligand binding. Natl Acad Sci USA. 1998;95:12271–6.

    Article  Google Scholar 

  26. Rabe M, Verdes D, Seeger S. Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interf Sci. 2011 Feb 17;162(1–2):87–106.

    Article  CAS  Google Scholar 

  27. Pace CN, Shirley BA, McNutt M, Gajiwala K. Forces contributing to the conformational stability of proteins. FASEB J. 1996;10(1):75–83. -11

    Article  CAS  PubMed  Google Scholar 

  28. Chantalat L, Jones ND, Korber F, Navaza J, Pavlosky AG. The crystal structure of wild-type growth-hormone at 2.5 angstrom resolution. Protein Pept Lett. 1995;2:333.

    CAS  Google Scholar 

  29. Eftink MR. Fluorescence techniques for studying protein structure. Methods Biochem Anal. 1990;35:117–29.

    Google Scholar 

  30. Steiner R, Kirby E. The interaction of the ground and excited states of indole derivatives with electron scavengers. J Phys Chem. 1969;73:4130–5.

    Article  CAS  PubMed  Google Scholar 

  31. Chen Y, Liu B, Yu HT, Barkley M. The peptide bond quenches indole fluorescence. J Am Chem Soc. 1996;118:9271–8. https://doi.org/10.1021/ja961307u. [Cross Ref]

  32. Adams P, Chen Y, Ma K, Zagorski M, Sönnichsen F, McLaughlin M, et al. Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic hexapeptides. J Am Chem Soc. 2002;124:9278–86. https://doi.org/10.1021/ja0167710.

    Article  CAS  PubMed  Google Scholar 

  33. Ghisaidoobe ABT, Chung SJ. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques. Schneckenburger H, ed. Int J Mol Sci. 2014;15(12):22518–38. https://doi.org/10.3390/ijms151222518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen Y, Barkley MD. Toward understanding tryptophan fluorescence in proteins. Biochemistry. 1998;

  35. Vander Donckt E. Fluorescence solvent shifts and singlet excited state pk's. of indole derivatives. Bull Soc Chim Belg. 1969;78:69–75.

    Article  CAS  Google Scholar 

  36. Yu H-T, Colucci WJ, McLaughlin ML, Barkley MD. Fluorescence quenching in indoles by excited-state proton transfer. J Am Chem Soc. 1992;114:8449–54.

    Article  CAS  Google Scholar 

  37. Chen Y, Liu B, Barkley MD. Trifluoroethanol quenches indole fluorescence by excited-state proton transfer. J Am Chem Soc. 1995;117:5608–9.

    Article  CAS  Google Scholar 

  38. Saito I, Sugiyama H, Yamamoto A, Muramatsu S, Matsuura T. Photochemical hydrogen-deuterium exchange reaction of tryptophan. The role in nonradioative decay of singlet tryptophan. J Am Chem Soc. 1984;106:4286–7.

    Article  CAS  Google Scholar 

  39. Shizuka H, Serizawa M, Kobayashi H, Kameta K, Sugiyama H, Matsuura T, et al. Excited-state behavior of tryptamine and related indoles. Remarkably efficient intramolecular proton-induced quenching. J Am Chem Soc. 1988;110:1726–32.

    Article  CAS  Google Scholar 

  40. Buijs J, Hlady VV. Adsorption kinetics, conformation, and mobility of the growth hormone and lysozyme on solid surfaces, studied with TIRF. J Colloid Interface Sci. 1997;190:171–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vlasova IM, Zhuravleva VV, Saletsky AM. Denaturation of bovine serum albumin initiated by sodium dodecyl sulfate as monitored via the intrinsic fluorescence of the protein. Russ J Phys Chem B. 2014;8:385–90. https://doi.org/10.1134/S1990793114030154.

    Article  CAS  Google Scholar 

  42. Guanghui Ma, Zhi-Guo Su, Wang L, Yang T. Microspheres and microcapsules in biotechnology: design, preparation and application. Drug Loading methods. Boca Raton: CRC Press; 2013. pp. 271. International standard book number -13: 978-981-4364-62-1(ebook-PDF).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaishnavi Rohitkumar Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, V.R., Gupta, P.K. Structural Stability of Recombinant Human Growth Hormone (r-hGH) as a Function of Polymer Surface Properties. Pharm Res 35, 98 (2018). https://doi.org/10.1007/s11095-018-2372-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2372-y

KEY WORDS

Navigation